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Examples

1. Spin-1/2 Heisenberg chain

2. The AKLT chain

3. Other AKLT models

4. The XXZ model

5. The Toric Code Hamiltonian

6. −P(0) chains with dimerization; O(n) spin chains

7. Haldane Pseudo-potential model for ν = 1/3 Fractional Quantum
Hall Effect

8. Product Vacua with Boundary States
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The spin-1/2 Heisenberg chain
Γ = Z, nx = 2 for all x , nearest neighbor interaction:

H[a,b] = −J
b−1∑
x=a

Sx · Sx+1

J > 0 is the ferromagnetic chain: all translation-invariant states of the

form ωφ =
⊗

x〈φ, ·φ〉, φ ∈ C2, are ground states.

Goldstone Thm implies these states are gapless: spec(Hωφ) = [0,∞).
For finite volumes [0, L] gap is O(L−2).

J < 0 is the antiferromagnetic chain: unique ground state in infinite
volume. Lieb-Schultz-Mattis Thm implies gapless spectrum. For finite
volumes [0, L] gap ≤ C/L.
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Ferromagnetic XXZ model on Γ = Zν

S = 1/2, ∆ > 1.

HΛ = −
∑
x,y∈Λ

|x−y |=1

S1
x S

1
y + S2

x S
2
y + ∆S3

x S
3
y .

This model has two translation invariant ground states and infinite
families of interface ground states for all ν ≥ 1.

For ν = 1 all these states have a positive ground state gap = ∆− 1.

For ν > 1, the gap above the translation invariant ground states is
ν(∆−1), while the spectrum above the interface ground states is gapless.
Gottstein-Werner 1995, N-Koma 1996, Matsui 1997, Bolina-Contucci-N-Starr

2000, N-Spitzer-Starr 2007, ...

Generalization for spin S , S = 1/2, 1, 3/2, ... have also been studied
(Alcaraz-Salinas-Wreszinksi 1995, Koma-N 2001, ...).



5

The AKLT chain
Most famous example of isotropic gapped spin chain: the AKLT spin-1
chain (Affleck-Kennedy-Lieb-Tasaki, 1987-88).

Γ = Z, Hx = C3;

H[1,L] =
L−1∑
x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L−1∑
x=1

P
(2)
x,x+1

dim kerH[1,L] = 4 for all L ≥ 2.

In the limit of the infinite chain, the ground state is unique, has a finite
correlation length, and there is a non-vanishing gap in the spectrum
above the ground state, and represents an Symmetry Protected
Topological Phase (the Haldane phase).

Ground state is given by a Matrix Product State (MPS).
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AKLT models
Affleck, Kennedy, Lieb, and Tasaki (1987-88) introduced a class of nearest
neighbor Hamiltonians on regular lattices, later generalized by Kirillov and

Korepin (1989) to general graphs G . For each x ∈ G , Hx = Cdx , with
dx = degree of x +1. The dx - dimensional irrep of SU(2) acts on Hx .
Let z(e) denote the sum of the degrees of the vertices of the an edge e
in G . Then

HAKLT
G =

∑
edges e in G

P(z(e)/2)
e ,

where P
(j)
e denoted the orthogonal projection on the states on the edge e

of total spin j . Recall

Vj1 ⊗ Vj2 =

j1+j2⊕
j=|j1−j2|

Vj .
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AKLT model on hexagonal (honeycomb) lattice
At each vertex sits a spin of magnitude S = 3/2 (Hx = C4).

Hamiltonian:
HAKLT =

∑
edges {x,y}

hAKLTx,y .
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The AKLT model on n-decorated honeycomb.
E.g.: 2-decorated hexagonal lattice:

Theorem (AbdulRahman-Lemm-Lucia-N-Young, 2020)
For all n ≥ 3, there exist γn > 0, such that spectral gap above the
ground state of the AKLT model on an n-decorated hexagonal lattice is
bounded below by γn.



9

Toric Code Hamiltonian (Kitaev 2006)
Γ = E(Z2), the edges of the square lattice; Ax = C2, for all x ∈ Γ

a b

cd

w

x

y

z H =
∑

v (1l− Av )

+
∑

f (1l− Bf )

Bf = σ3
aσ

3
bσ

3
cσ

3
d

Av = σ1
wσ

1
xσ

1
yσ

1
z

On a finite finite torus Z/(L1Z)× Z/(L1Z), the spectrum is
{0, 4, 8, 12, . . .}, and the multiplicity of the eigenvalue 0 is 4.



10

O(n) spin chains
O(n) chains: Γ = Z, Hx = Cn.
Recall AKLT model, n = 3: nearest neighbor interaction

Φ({x , x + 1}) = hx,x+1 = 1
2Sx · Sx+1 + 1

6 (Sx · Sx+1)2 + 1
31l = P

(2)
x,x+1.

The general isotropic nearest neighbor interaction for n = 3:
hx,x+1 = cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.
Alternative way to represent the AKLT Hamiltonian in terms of ‘swap’
operator, T , and a rank-1 projection:

2P(2) = T − 2P(0) + 1l,

where P(0) projects onto the singlet state. There is an o.n. basis
e1, e0, e−1 such that

ψ =
1√
3

(e1 ⊗ e1 + e0 ⊗ e0 + e−1 ⊗ e−1).

This generalizes to n-dimensional spins and arbitrary coupling constants
as follows

uT + vQ, u, v ∈ R
where Q is the projection to

ψ =
1√
n

n∑
α=1

|α, α〉.

Both T and Q commute with the natural action of O(n) on the spins in
this basis. It is the general O(n) invariant nearest neighbor interaction for
n ≥ 2, which was studied by Tu & Zhang, 2008.
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Figure: Ground state phase diagram
for the S = 1 chain (n = 3) with
nearest-neighbor interactions
cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.

I φ = 0 Heisenberg AF chain,
Haldane phase (Haldane, 1983)

I tanφ = 1/3, AKLT point
(Affleck-Kennedy-Lieb-Tasaki,

1987,1988), FF, MPS, gapped
I tanφ = 1, solvable, gapless,

SU(3) invariant, (Sutherland,

1975)
I φ ∈ [π/2, 3π/2], ferromagnetic,

FF, gapless
I φ = −π/2, solvable, SU(3)

invariant, Temperley-Lieb
algebra, dimerized, gapped
(Klümper; Affleck,1990)

I φ− = −π/4 gapless,
Bethe-ansatz, (Takhtajan;

Babujian, 1982)
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u
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Matrix-product state(s)
v = −2u

Figure: Ground state phase diagram
for the chain with nearest-neighbor
interactions uT + vQ for n ≥ 3,
studied by Tu & Zhang, 2008.

I v = −2nu/(n − 2), n ≥ 3, Bethe
ansatz point (Reshetikhin, 1983)

I v = −2u: frustration free point,
equivalent to ⊥ projection onto
symmetric vectors 	 one. Unique
g.s. if n odd; two 2-periodic g.s.
for even n; spectral gap in all
cases and stable phase
(N-Sims-Young, 2021).

I u = 0, v = −1. Equivalent to the
SU(n) −P(0) models aka
Temperley-Lieb chain; Affleck,

1990, Nepomechie-Pimenta 2016).
Dimerized for all n ≥ 3
(Aizenman, Duminil-Copin, Warzel,

2020); ‘Stability’ for large n
(Björnberg-Mühlbacher-N-Ueltschi,

2021).
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Pseudo-potential Hamiltonian for the ν = 1/3 Fractional
Quantum Hall Effect
Truncated Haldane model for a 1/3-filled first Landau level in a cylinder
geometry:

R

B

x

y

|ψn(x , y)|2

x
α`

The one-particle eigenstates ψn (Landau orbitals) have a Gaussian shape
and are lined up along the cylinder at a spacing given by `2/R,
` =

√
~/(eB), n ∈ Z.

One-dimensional spin-1/2 (or spinless Fermion) Hamiltonian models the
opening up of the gap in the spectrum due to interactions.
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Hamilttonian with parameters κ ≥ 0 and λ ∈ C:

H =
∑
x

(nxnx+2 + κ q∗x qx)

Creation/annihilation c∗x , cx of Landau orbital at x ∈ Z
Number operator: nx := c∗x cx

Dipole-preserving hopping: qx := cx+1cx+2 − λ cxcx+3

Theorem (N-Young-Warzel 2020 & 2021, Young-Warzel 2022)
For all λ 6= 0 with |λ| < 5.3548, κ ≥ 0 there is a constant f

(
|λ|2
)
< 1/3

for which

lim inf
L→∞

gapH[1,L]

≥ 1

3
min

{
1,

κ

2 + 2κ|λ|2
,

κ

1 + κ
,

κ

2(1 + 2|λ|2)

(
1−

√
3f (|λ|2)

)2
}
> 0 .

Note that the physical range is |λ| ∈ [0, 3].
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Product Vacua with Boundary States (PVBS)
A model with a gap when defined on Zν , ν ≥ 2, but gapless spectrum on
certain half-spaces:

At each site nx = 2; o.n.b. {|0〉, |1〉}, Let e1, . . . , eν be the canonical
basis vectors of Zν ⊂ Rν . The interaction is nearest neighbor: hx,x+ej ,
with j = 1, . . . , ν, such that x , x + ej ∈ Λ. depending on parameters
λj ∈ (0,∞), j = 1, . . . , ν, and are defined by

hx,x+ej = |φ(λj )〉〈φ(λj )|+ |11〉〈11|, (1)

where φ(λ) = (|01〉 − λ|10〉)/
√

1 + λ2, for λ ∈ (0,∞). The Hamiltonian
is then

HΛ =
ν∑

j=1

∑
x∈Λ

s.t. x+ej∈Λ

hx,x+ej , (2)

which is frustration-free and translation invariant.
Let γD be the ground state gap of the GNS Hamiltonian, HD , in the
unique ground state of this model defined on infinite half spaces bounded
by a hyperplane containing the origin, that is subsets D ⊂ Zν determined
by a unit vector m ∈ Rν (the inward normal) as follows:
D := {x ∈ Zν : m · x ≥ 0}.
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If ν = 1, the model is gapless if λ = 1 and gapped otherwise
(Bachmann-N, 2012).

For ν ≥ 2, the positivity of γ(D) is determined by the angle, θ, between
the vectors m and − logλ.
Define c(v) := min{|vj | : vj 6= 0}, v ∈ Rν .

Theorem (Bachmann-Hamza-N-Young 2015, Bishop-N-Young 2016)
(i) For all ν ≥ 2, λ1, . . . , λν ∈ (0,∞), and unit vectors m ∈ Rν such that
m · logλ < 0, one has the following upper bound:

γ(D) ≤ 2(d − 1)

c(m)c(λ)2
‖ logλ‖| sin(θ)|, (3)

where θ is the angle between the vectors −m and logλ. In particular, the
gap vanishes if θ = 0.
(ii) If logλ 6= −‖ logλ‖m, then γ(D) > 0.


