Gapped Ground State Phases of Quantum Spin Systems Examples.

Bruno Nachtergaele (UC Davis)

Examples

1. Spin-1/2 Heisenberg chain
2. The AKLT chain
3. Other AKLT models
4. The XXZ model
5. The Toric Code Hamiltonian
6. $-P(0)$ chains with dimerization; $O(n)$ spin chains
7. Haldane Pseudo-potential model for $\nu=1 / 3$ Fractional Quantum Hall Effect
8. Product Vacua with Boundary States

The spin-1/2 Heisenberg chain

$\Gamma=\mathbb{Z}, n_{x}=2$ for all x, nearest neighbor interaction:

$$
H_{[a, b]}=-J \sum_{x=a}^{b-1} \mathbf{S}_{x} \cdot \mathbf{S}_{x+1}
$$

$J>0$ is the ferromagnetic chain: all translation-invariant states of the form $\omega_{\phi}=\bigotimes_{x}\langle\phi, \cdot \phi\rangle, \phi \in \mathbb{C}^{2}$, are ground states.
Goldstone Thm implies these states are gapless: $\operatorname{spec}\left(H_{\omega_{\phi}}\right)=[0, \infty)$. For finite volumes $[0, L]$ gap is $O\left(L^{-2}\right)$.
$J<0$ is the antiferromagnetic chain: unique ground state in infinite volume. Lieb-Schultz-Mattis Thm implies gapless spectrum. For finite volumes $[0, L]$ gap $\leq C / L$.

Ferromagnetic XXZ model on $\Gamma=\mathbb{Z}^{\nu}$

$S=1 / 2, \Delta>1$.

$$
H_{\Lambda}=-\sum_{\substack{x, y \in \wedge \\|x-y|=1}} S_{x}^{1} S_{y}^{1}+S_{x}^{2} S_{y}^{2}+\Delta S_{x}^{3} S_{y}^{3} .
$$

This model has two translation invariant ground states and infinite families of interface ground states for all $\nu \geq 1$.

For $\nu=1$ all these states have a positive ground state gap $=\Delta-1$.
For $\nu>1$, the gap above the translation invariant ground states is $\nu(\Delta-1)$, while the spectrum above the interface ground states is gapless. Gottstein-Werner 1995, N-Koma 1996, Matsui 1997, Bolina-Contucci-N-Starr 2000, N-Spitzer-Starr 2007, ...

Generalization for spin $S, S=1 / 2,1,3 / 2, \ldots$ have also been studied (Alcaraz-Salinas-Wreszinksi 1995, Koma-N 2001, ...).

The AKLT chain

Most famous example of isotropic gapped spin chain: the AKLT spin-1 chain (Affleck-Kennedy-Lieb-Tasaki, 1987-88).
$\Gamma=\mathbb{Z}, \mathcal{H}_{x}=\mathbb{C}^{3} ;$

$$
H_{[1, L]}=\sum_{x=1}^{L-1}\left(\frac{1}{3} \mathbb{1}+\frac{1}{2} \mathbf{S}_{x} \cdot \mathbf{S}_{x+1}+\frac{1}{6}\left(\mathbf{S}_{x} \cdot \mathbf{S}_{x+1}\right)^{2}\right)=\sum_{x=1}^{L-1} P_{x, x+1}^{(2)}
$$

dim $\operatorname{ker} H_{[1, L]}=4$ for all $L \geq 2$.
In the limit of the infinite chain, the ground state is unique, has a finite correlation length, and there is a non-vanishing gap in the spectrum above the ground state, and represents an Symmetry Protected Topological Phase (the Haldane phase).
Ground state is given by a Matrix Product State (MPS).

AKLT models

Affleck, Kennedy, Lieb, and Tasaki (1987-88) introduced a class of nearest neighbor Hamiltonians on regular lattices, later generalized by Kirillov and Korepin (1989) to general graphs G. For each $x \in G, \mathcal{H}_{x}=\mathbb{C}^{d_{x}}$, with $d_{x}=$ degree of $x+1$. The d_{x} - dimensional irrep of $S U(2)$ acts on \mathcal{H}_{x}. Let $z(e)$ denote the sum of the degrees of the vertices of the an edge e in G. Then

$$
H_{G}^{\mathrm{AKLT}}=\sum_{\text {edges } e \text { in } G} P_{e}^{(z(e) / 2)}
$$

where $P_{e}^{(j)}$ denoted the orthogonal projection on the states on the edge e of total spin j. Recall

$$
V_{j_{1}} \otimes V_{j_{2}}=\bigoplus_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} V_{j}
$$

AKLT model on hexagonal (honeycomb) lattice

 At each vertex sits a spin of magnitude $S=3 / 2\left(\mathcal{H}_{x}=\mathbb{C}^{4}\right)$. Hamiltonian:$$
H^{A K L T}=\sum_{\text {edges }\{x, y\}} h_{x, y}^{A K L T}
$$

The AKLT model on n-decorated honeycomb.
E.g.: 2-decorated hexagonal lattice:

Theorem (AbdulRahman-Lemm-Lucia-N-Young, 2020)
For all $n \geq 3$, there exist $\gamma_{n}>0$, such that spectral gap above the ground state of the AKLT model on an n-decorated hexagonal lattice is bounded below by γ_{n}.

Toric Code Hamiltonian (Kitaev 2006)

$\Gamma=\mathcal{E}\left(\mathbb{Z}^{2}\right)$, the edges of the square lattice; $\mathcal{A}_{x}=\mathbb{C}^{2}$, for all $x \in \Gamma$

$$
\begin{aligned}
H= & \sum_{v}\left(\mathbb{1}-A_{v}\right) \\
& +\sum_{f}\left(\mathbb{1}-B_{f}\right) \\
A_{v}= & \sigma_{w}^{1} \sigma_{x}^{1} \sigma_{y}^{1} \sigma_{z}^{1} \\
B_{f}= & \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{aligned}
$$

On a finite finite torus $\mathbb{Z} /\left(L_{1} \mathbb{Z}\right) \times \mathbb{Z} /\left(L_{1} \mathbb{Z}\right)$, the spectrum is $\{0,4,8,12, \ldots\}$, and the multiplicity of the eigenvalue 0 is 4 .

$O(n)$ spin chains

$O(n)$ chains: $\Gamma=\mathbb{Z}, \mathcal{H}_{x}=\mathbb{C}^{n}$.
Recall AKLT model, $n=3$: nearest neighbor interaction
$\Phi(\{x, x+1\})=h_{x, x+1}=\frac{1}{2} \boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x+1}+\frac{1}{6}\left(\boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x+1}\right)^{2}+\frac{1}{3} \mathbb{1}=P_{x, x+1}^{(2)}$.
The general isotropic nearest neighbor interaction for $n=3$:
$h_{x, x+1}=\cos \phi \boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x+1}+\sin \phi\left(\boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x+1}\right)^{2}$.
Alternative way to represent the AKLT Hamiltonian in terms of 'swap' operator, T, and a rank-1 projection:

$$
2 P^{(2)}=T-2 P^{(0)}+\mathbb{1},
$$

where $P^{(0)}$ projects onto the singlet state. There is an o.n. basis e_{1}, e_{0}, e_{-1} such that

$$
\psi=\frac{1}{\sqrt{3}}\left(e_{1} \otimes e_{1}+e_{0} \otimes e_{0}+e_{-1} \otimes e_{-1}\right) .
$$

This generalizes to n-dimensional spins and arbitrary coupling constants as follows

$$
u T+v Q, \quad u, v \in \mathbb{R}
$$

where Q is the projection to

$$
\psi=\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}|\alpha, \alpha\rangle
$$

Figure: Ground state phase diagram for the $S=1$ chain ($n=3$) with nearest-neighbor interactions $\cos \phi \boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x+1}+\sin \phi\left(\boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x+1}\right)^{2}$.

- $\phi=0$ Heisenberg AF chain, Haldane phase (Haldane, 1983)
- $\tan \phi=1 / 3$, AKLT point (Affleck-Kennedy-Lieb-Tasaki, 1987,1988), FF, MPS, gapped
- $\tan \phi=1$, solvable, gapless, SU(3) invariant, (Sutherland, 1975)
- $\phi \in[\pi / 2,3 \pi / 2]$, ferromagnetic, FF, gapless
- $\phi=-\pi / 2$, solvable, $\operatorname{SU}(3)$ invariant, Temperley-Lieb algebra, dimerized, gapped (Klümper; Affleck,1990)
- $\phi-=-\pi / 4$ gapless, Bethe-ansatz, (Takhtajan; Babujian, 1982)

Figure: Ground state phase diagram for the chain with nearest-neighbor interactions $u T+v Q$ for $n \geq 3$, studied by Tu \& Zhang, 2008.

- $v=-2 n u /(n-2), n \geq 3$, Bethe ansatz point (Reshetikhin, 1983)
- $v=-2 u$: frustration free point, equivalent to \perp projection onto symmetric vectors \ominus one. Unique g.s. if n odd; two 2-periodic g.s. for even n; spectral gap in all cases and stable phase (N-Sims-Young, 2021).
- $u=0, v=-1$. Equivalent to the $S U(n)-P^{(0)}$ models aka Temperley-Lieb chain; Affleck, 1990, Nepomechie-Pimenta 2016). Dimerized for all $n \geq 3$ (Aizenman, Duminil-Copin, Warzel, 2020); 'Stability' for large n (Björnberg-Mühlbacher-N-Ueltschi, 2021).

Pseudo-potential Hamiltonian for the $\nu=1 / 3$ Fractional Quantum Hall Effect

Truncated Haldane model for a 1/3-filled first Landau level in a cylinder geometry:

The one-particle eigenstates ψ_{n} (Landau orbitals) have a Gaussian shape and are lined up along the cylinder at a spacing given by ℓ^{2} / R, $\ell=\sqrt{\hbar /(e B)}, n \in \mathbb{Z}$.

One-dimensional spin- $1 / 2$ (or spinless Fermion) Hamiltonian models the opening up of the gap in the spectrum due to interactions.

Hamilttonian with parameters $\kappa \geq 0$ and $\lambda \in \mathbb{C}$:

$$
H=\sum_{x}\left(n_{x} n_{x+2}+\kappa q_{x}^{*} q_{x}\right)
$$

Creation/annihilation c_{x}^{*}, c_{x} of Landau orbital at $x \in \mathbb{Z}$
Number operator: $n_{x}:=c_{x}^{*} c_{x}$
Dipole-preserving hopping: $q_{x}:=c_{x+1} c_{x+2}-\lambda c_{x} c_{x+3}$
Theorem (N-Young-Warzel 2020 \& 2021, Young-Warzel 2022)
For all $\lambda \neq 0$ with $|\lambda|<5.3548, \kappa \geq 0$ there is a constant $f\left(|\lambda|^{2}\right)<1 / 3$ for which

$$
\begin{aligned}
& \liminf _{L \rightarrow \infty} \operatorname{gap} H_{[1, L]} \\
& \geq \frac{1}{3} \min \left\{1, \frac{\kappa}{2+2 \kappa|\lambda|^{2}}, \frac{\kappa}{1+\kappa}, \frac{\kappa}{2\left(1+2|\lambda|^{2}\right)}\left(1-\sqrt{3 f\left(|\lambda|^{2}\right)}\right)^{2}\right\}>0 .
\end{aligned}
$$

Note that the physical range is $|\lambda| \in[0,3]$.

Product Vacua with Boundary States (PVBS)

A model with a gap when defined on $\mathbb{Z}^{\nu}, \nu \geq 2$, but gapless spectrum on certain half-spaces:

At each site $n_{x}=2$; o.n.b. $\{|0\rangle,|1\rangle\}$, Let e_{1}, \ldots, e_{ν} be the canonical basis vectors of $\mathbb{Z}^{\nu} \subset \mathbb{R}^{\nu}$. The interaction is nearest neighbor: $h_{x, x+e_{j}}$, with $j=1, \ldots, \nu$, such that $x, x+e_{j} \in \Lambda$. depending on parameters $\lambda_{j} \in(0, \infty), j=1, \ldots, \nu$, and are defined by

$$
\begin{equation*}
h_{x, x+e_{j}}=\left|\phi^{\left(\lambda_{j}\right)}\right\rangle\left\langle\phi^{\left(\lambda_{j}\right)}\right|+|11\rangle\langle 11|, \tag{1}
\end{equation*}
$$

where $\phi^{(\lambda)}=(|01\rangle-\lambda|10\rangle) / \sqrt{1+\lambda^{2}}$, for $\lambda \in(0, \infty)$. The Hamiltonian is then

$$
\begin{equation*}
H_{\Lambda}=\sum_{j=1}^{\nu} \sum_{\substack{x \in \Lambda \\ \text { s.t. } \\ x+e_{j} \in \Lambda}} h_{x, x+e_{j}}, \tag{2}
\end{equation*}
$$

which is frustration-free and translation invariant.
Let γ_{D} be the ground state gap of the GNS Hamiltonian, H^{D}, in the unique ground state of this model defined on infinite half spaces bounded by a hyperplane containing the origin, that is subsets $D \subset \mathbb{Z}^{\nu}$ determined by a unit vector $m \in \mathbb{R}^{\nu}$ (the inward normal) as follows:
$D:=\left\{x \in \mathbb{Z}^{\nu}: m \cdot x \geq 0\right\}$.

If $\nu=1$, the model is gapless if $\lambda=1$ and gapped otherwise (Bachmann-N, 2012).
For $\nu \geq 2$, the positivity of $\gamma(D)$ is determined by the angle, θ, between the vectors m and $-\log \lambda$.
Define $c(v):=\min \left\{\left|v_{j}\right|: v_{j} \neq 0\right\}, v \in \mathbb{R}^{\nu}$.
Theorem (Bachmann-Hamza-N-Young 2015, Bishop-N-Young 2016)
(i) For all $\nu \geq 2, \lambda_{1}, \ldots, \lambda_{\nu} \in(0, \infty)$, and unit vectors $m \in \mathbb{R}^{\nu}$ such that $m \cdot \log \boldsymbol{\lambda}<0$, one has the following upper bound:

$$
\begin{equation*}
\gamma(D) \leq \frac{2(d-1)}{c(m) c(\boldsymbol{\lambda})^{2}}\|\log \boldsymbol{\lambda}\||\sin (\theta)| \tag{3}
\end{equation*}
$$

where θ is the angle between the vectors $-m$ and $\log \boldsymbol{\lambda}$. In particular, the gap vanishes if $\theta=0$.
(ii) If $\log \boldsymbol{\lambda} \neq-\|\log \boldsymbol{\lambda}\| m$, then $\gamma(D)>0$.

