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CFD Vision 2030 Research Roadmap

Visualization

Unsteady, complex geometry, separated flow at 
flight Reynolds number (e.g., high lift)

2030202520202015

HPC
CFD on Massively Parallel Systems

CFD on Revolutionary Systems
(Quantum, Bio, etc.)

TRL LOW
MEDIUM
HIGH

PETASCALE

Demonstrate implementation of CFD 
algorithms for extreme parallelism in 

NASA CFD codes (e.g., FUN3D)

EXASCALE

Technology Milestone

Demonstrate efficiently scaled 
CFD simulation capability on an 
exascale system

30 exaFLOPS, unsteady, 
maneuvering flight, full engine 

simulation (with combustion)

Physical Modeling

RANS

Hybrid RANS/LES

LES

Improved RST models 
in CFD codes

Technology Demonstration

Algorithms
Convergence/Robustness

Uncertainty Quantification (UQ)

Production scalable 
entropy-stable solvers

Characterization of UQ in aerospace

Highly  accurate RST models for flow separation

Large scale stochastic capabilities in CFD

Knowledge Extraction
On demand analysis/visualization of a 
10B point unsteady CFD simulation

MDAO
Define standard for coupling 

to other disciplines

High fidelity coupling 
techniques/frameworks

Incorporation of UQ for MDAO

UQ-Enabled MDAO 

Integrated transition 
prediction

Decision Gate

YES

NO

NO

Scalable optimal solvers

YES

NODemonstrate solution of a 
representative model problem

Robust CFD for 
complex MDAs

Automated robust solvers

Reliable error estimates in CFD codes

MDAO simulation of an entire 
aircraft (e.g., aero-acoustics)

On demand analysis/visualization of a 
100B point unsteady CFD simulation

Creation of real-time multi-fidelity database: 1000 unsteady CFD 
simulations plus test data with complete UQ of all data sources

WMLES/WRLES for complex 3D flows at appropriate Re

Integrated Databases
Simplified data 
representation

Geometry and Grid 
Generation

Fixed Grid

Adaptive Grid

Tighter CAD coupling
Large scale parallel 
mesh generation Automated in-situ mesh 

with adaptive control

Production AMR in CFD codes

Uncertainty propagation  
capabilities in CFD

Grid convergence for a 
complete configuration

Multi-regime 
turbulence-chemistry 
interaction model

Chemical kinetics 
in LES

Chemical kinetics 
calculation speedupCombustion

Unsteady, 3D geometry, separated flow
(e.g., rotating turbomachinery with reactions)

“There is steady progress 
on fabricating practical 
quantum computers, and 
such systems may be 
available in 2030.  
However, while a 
quantum computer can 
be used for some linear 
algebra calculations …, a 
quantum computer is 
not necessarily a faster 
computer for CFD 
calculations.” (CFD Vision 
2030 Study Report)



Kolmogorov microscale and Reynolds number

• A simulation of fluid flow needs to cover a wide 
range of length scales

• 𝐿𝐿 the size of the largest eddies in the flow

• 𝜂𝜂 the Kolmogorov length scale at which 
eddies are dissipated into heat

• The ratio of these two length scales is the 
Reynolds number defined as

Re =
𝐿𝐿
𝜂𝜂

4/3

=
𝑣𝑣𝑣𝑣
𝜈𝜈

• Here 𝑣𝑣 is the speed of the flow and 𝜈𝜈 the 
kinematic viscosity

• Flows become turbulent when Re is greater than a 
couple of thousands

• Grid based methods typically scale with Re3𝐾𝐾/4
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The challenge – Resolving a wide range of length-scales

• Typically, the largest eddy size 𝐿𝐿 is

10m ≤ 𝐿𝐿 ≤ 100m

• Resolution up to the Kolmogorov length scale η, typically

0.1mm ≤ 𝜂𝜂 ≤ 10mm

• Necessary Grid Points 𝑁𝑁

1 000 000 000 ≤ 𝑁𝑁 ≤ 1 000 000 000 000 000 000

• Necessary memory 𝑀𝑀 for storing a single velocity component

8 Mbyte ≤ 𝑀𝑀 ≤ 8 000 Pbyte = 8 000 000 Tbyte

• Additionally, very small time steps are often necessary

• one usually works with approximations

• Can work very well – especially with known configurations

• Unfortunately, they also deliver qualitatively incorrect results Bulbous bows

Winglets



Combustion physics

Quantum industrial design

Quantum Simulation

Fluid Flows
Plasma physics

Roger Penrose, "Applications of negative 
dimensional tensors," in Combinatorial 

Mathematics and its Applications, 
Academic Press (1971)



Incompressible Navier-Stokes equation

• We solve the 2D and 3D equations 
for simple fluid flows

𝜕𝜕𝑣⃗𝑣
𝜕𝜕𝜕𝜕

= − 𝑣⃗𝑣 ⋅ ∇ 𝑣⃗𝑣 − ∇𝑝𝑝 +
1

Re
 ∇2𝑣⃗𝑣

∇ ⋅ 𝑣⃗𝑣 = 0

• 2D  weather forecast

• 3D  aerodynamics, combustion 
physics, …



Outline

MPS 
• Encoding grid functions
• Classical entanglement spectrum
• Turbulence correlations

CFD 
Examples

• MPS algorithm
• Jet formation and Taylor Green vortex
• Driven cavity
• Magnus effect

Hybrid
Optimization

• Hardware architecture
• Quantum network
• Generic cost function
• Proof of Principle 

Example



Amplitude encoding of discrete functions

Quantum superposition

𝜓𝜓 = �
𝑖𝑖

𝑓𝑓𝑖𝑖|𝚤𝚤⟩

𝑛𝑛-qubit register stores 2𝑛𝑛 function values 𝑓𝑓𝑗𝑗
0 𝑁𝑁 = 2𝑛𝑛 − 1

⋯

𝑓𝑓(𝑗𝑗)

𝑗𝑗

Map 𝑗𝑗 → 𝚥𝚥 = binary j  for 𝑛𝑛 = 8:

𝑗𝑗 = 0 → 𝚥𝚥 = 00000000 𝑗𝑗 = 1 →  𝚥𝚥 = 00000001 𝑗𝑗 = 2 → 𝚥𝚥 = 00000010 …  𝑗𝑗 = 255 → 𝚥𝚥 = 11111111

𝑓𝑓𝑗𝑗

𝑓𝑓0 𝑓𝑓1 𝑓𝑓2 𝑓𝑓255
⋯



MPS – Classical Entanglement Spectra

• Consider a scalar field 𝑢𝑢 𝒓𝒓𝑞𝑞  on a 2𝑁𝑁 × 2𝑁𝑁 of size 𝐿𝐿 × 𝐿𝐿.

• We decompose the field into functions on a coarse 𝐿𝐿/2 
grid (red dots 𝑿𝑿𝑘𝑘) and a fine grid (black dots) as

𝑢𝑢 𝒓𝒓𝑞𝑞 = �
𝛼𝛼=1

𝜒𝜒(1)

𝜆𝜆𝛼𝛼𝑅𝑅𝛼𝛼 𝑿𝑿𝑘𝑘 𝑓𝑓𝛼𝛼(𝒙𝒙𝑙𝑙)  where 𝐫𝐫q = 𝐗𝐗k + 𝐱𝐱l

• The maximum number of terms in this sum is 

𝜒𝜒max 1 = 4

• The actually required number of terms 𝜒𝜒(1) in this sum 
is the so-called Schmidt number. It is a measure of 
correlations between 𝐿𝐿/2 and other length scales.

• The terms in the sum are weighted by 𝜆𝜆𝛼𝛼 which is the 
entanglement spectrum.



MPS – Classical Entanglement Spectra

• We repeat this decomposition to get correlations 
between neighbouring length scales.

• For instance, for correlations between the length scale 
𝐿𝐿/4 and lengths scale 𝐿𝐿/8 we decompose each of the 
functions 𝑓𝑓𝛼𝛼(𝑥𝑥𝑙𝑙) from before.

• This gives a representation of the field as

𝑢𝑢 = �
𝛼𝛼=1

𝜒𝜒(1)

𝜆𝜆𝛼𝛼𝑅𝑅𝛼𝛼  �
𝛽𝛽=1

𝜈𝜈

𝜆𝜆𝛽𝛽𝑅𝑅𝛼𝛼𝛼𝛼𝑓𝑓𝛼𝛼𝛼𝛼

• The maximum Schmidt number 𝜒𝜒(2) is the total number 
of terms in these sums

𝜒𝜒max 2 = 42 = 16



MPS – Classical Entanglement Spectra

• In general, Schmidt numbers 𝜒𝜒 𝑛𝑛  and 𝜆𝜆𝛼𝛼
(𝑛𝑛) characterize 

the amount of correlations between length scales

𝐿𝐿 × 2−𝑛𝑛 and 𝐿𝐿 × 2−𝑛𝑛−1

• The repeated application of Schmidt decompositions 
with increasing 𝑛𝑛 gives a compact Matrix-Product-State 
(MPS) representation of the scalar field

𝑢𝑢 𝒓𝒓𝒒𝒒 = 𝐴𝐴𝑞𝑞1𝐴𝐴𝑞𝑞2𝐴𝐴𝑞𝑞3𝐴𝐴𝑞𝑞4 ⋯𝐴𝐴𝑞𝑞𝑁𝑁

• Here 𝐴𝐴𝑞𝑞𝑖𝑖 is a 𝜒𝜒 𝑖𝑖 − 1 × 𝜒𝜒(𝑖𝑖) matrix.

• The index 𝑞𝑞𝑖𝑖 labels the position in the 𝑖𝑖-th 2 × 2 sub-
grid 00, 01, 10, 11.

• In principle the maximum 𝜒𝜒 can grow exponentially with 
the fineness of the grid.



MPS – Turbulence Correlations

2D developing jet, Re=1000 3D Taylor-Green vortex, Re=800
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Entanglement spectrum

2D developing jet, Re=1000 3D Taylor-Green vortex, Re=800



The energy cascade – three spatial dimensions 

• Richardson in 1922 on 3D turbulence:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

al
ta

ir.
co

m
w

w
w

-v
or

te
x.

m
cs

.s
t-a

nd
.a

c.
uk

/

3D

2D



Entanglement entropy

• The entanglement entropy is 
different for 2D and 3D flows

• For 2D the entropy shifts to 
coarser length scales with 
increasing time, consistent with 
the inverse energy cascade

• In 3D the opposite happens 
consistent with energy cascade 
energising small length scales.

2D developing jet, Re=1000 3D Taylor-Green vortex, Re=800
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MPS algorithm for the incompressible Navier-Stokes equation

• We need to solve the pair of equations

𝜕𝜕𝑣⃗𝑣
𝜕𝜕𝜕𝜕

= − 𝑣⃗𝑣 ⋅ ∇ 𝑣⃗𝑣 − ∇𝑝𝑝 +
1

Re
 ∇2𝑣⃗𝑣

∇ ⋅ 𝑣⃗𝑣 = 0

• We solve this set of equations using Runge-Kutta methods but illustrate the method here for a simple Euler step.

• Starting from the solution 𝑣⃗𝑣 at time 𝑡𝑡 we want to obtain the velocity 𝑣⃗𝑣∗ at time 𝑡𝑡 + Δ𝑡𝑡, encoded as MPS.

• We use a variational method and define the cost function (using the ℒ2 norm)

Θ 𝑣⃗𝑣∗ = 𝜇𝜇 �∇ ⋅ 𝑣⃗𝑣∗ 2 +
𝑣⃗𝑣∗ − 𝑣⃗𝑣
Δ𝑡𝑡 + 𝑣⃗𝑣 ⋅ �∇ 𝑣⃗𝑣 − 𝜈𝜈�∇2𝑣⃗𝑣

2

Penalty term that 
ensures that the second 

equation is fulfilled

𝑣⃗𝑣∗ only appears in the 
time derivative



MPS algorithm for evolving a 2D fluid flow in time

• We explicitly work out 𝑣⃗𝑣 = 𝑢𝑢1𝑒𝑒1 + 𝑢𝑢2𝑒𝑒2 and 𝑣⃗𝑣∗ = 𝑢𝑢1∗𝑒𝑒1 + 𝑢𝑢2∗𝑒𝑒2 and write the components as bold vectors on the 
grid, e.g. 𝒖𝒖1 = {𝑢𝑢1 𝑟𝑟1 ,𝑢𝑢1 𝑟𝑟1 ⋯ } and express the cost function as

• Here, Δ/Δ𝑥𝑥𝑗𝑗 and Δ2/Δ𝑥𝑥𝑗𝑗2 are the discretized first and second order derivatives in direction 𝑗𝑗.

• We actually use eighth-order central finite difference stencils and represent the Laplace operator as an MPO.

• We give a low order expression on the next slide.

• The terms in [⋯ ] are constant and thus irrelevant for the optimization, a step scales like 𝒪𝒪(𝑁𝑁𝜒𝜒4) or 𝒪𝒪(𝜒𝜒4 log𝐿𝐿).



Simple example MPO: Forward differencing in x-direction

• For this example we assume that the grid has been re-ordered, going along the lines of the 
grid in x-direction, with fixed boundaries

Δ
Δ𝑥𝑥

𝑓𝑓
𝑝𝑝,𝑞𝑞

=
𝑓𝑓𝑝𝑝+1,𝑞𝑞 − 𝑓𝑓𝑝𝑝,𝑞𝑞

Δ𝑥𝑥

• This operator can be written as an MPS of the form
Δ
Δ𝑥𝑥

= 𝐴𝐴 ⊗𝑘𝑘 𝐵𝐵 𝑘𝑘 𝐶𝐶

• where 

         𝐴𝐴 = (1,0)
Δ𝑥𝑥

,      𝐵𝐵 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁 = 𝕀𝕀,     𝐵𝐵 𝑁𝑁 < 𝑘𝑘 ≤ 2𝑁𝑁 = 𝕀𝕀 𝜎𝜎01
0 𝜎𝜎10

,      𝐶𝐶 = −1,1 𝑇𝑇

• For a 4 × 4 grid we have
Δ
Δ𝑥𝑥 =

1
Δ𝑥𝑥 1,0 𝕀𝕀 ⊗ 𝕀𝕀⊗ 𝕀𝕀 𝜎𝜎01

0 𝜎𝜎10
⊗ 𝕀𝕀 𝜎𝜎01

0 𝜎𝜎10
−1
1

=
1
Δ𝑥𝑥 1,0 𝕀𝕀 ⊗ 𝕀𝕀⊗ 𝕀𝕀⊗ 𝕀𝕀 𝕀𝕀⊗ 𝕀𝕀⊗ 𝕀𝕀⊗ 𝜎𝜎01 + 𝕀𝕀 ⊗ 𝕀𝕀⊗ 𝜎𝜎01 ⊗ 𝜎𝜎10

0 𝜎𝜎10 ⊗ 𝜎𝜎10
−1
1

=
1
Δ𝑥𝑥 −𝕀𝕀⊗ 𝕀𝕀⊗ 𝕀𝕀⊗ 𝕀𝕀 + 𝕀𝕀 ⊗ 𝕀𝕀⊗ 𝕀𝕀⊗ 𝜎𝜎01 + 𝕀𝕀 ⊗ 𝕀𝕀⊗ 𝜎𝜎01 ⊗ 𝜎𝜎10



Minimization of the cost function

• We put the orthogonality centre of the MPS at site 𝑛𝑛 and write

• This leads to the cost function



Minimizing the cost function

• Minimizing this cost function is equivalent to solving the equation

• and this can be rewritten as finding the ground state of a positive definite operator 𝕀𝕀 − 𝜇𝜇Δ𝑡𝑡2𝐻𝐻 𝜶𝜶 = 𝜷𝜷 where

• This can be solved by gradient descent method. Global optimization is then done via the DMRG algorithm.



Example: 2D Jet Formation



CFD Examples – Jet Formation
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CFD Examples – Jet Formation
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Simulation with 

𝜒𝜒max = 74 

corresponds to a compression of 

16:1



Example: Taylor Green Vortex



CFD Examples – Taylor Green Vortex

Vortical structures at 𝑡𝑡 = 0.2𝑇𝑇0, 1.4𝑇𝑇0, 2𝑇𝑇0

(rendered using the 𝜆𝜆2 method)



CFD Examples – Taylor Green Vortex

Vortical structures at 𝑡𝑡 = 0.2𝑇𝑇0, 1.4𝑇𝑇0, 2𝑇𝑇0

(rendered using the 𝜆𝜆2 method)

Simulation with 

𝜒𝜒max = 128 

corresponds to a compression of 

49:1



CFD Examples – Taylor Green Vortex

Enstrophy 𝜉𝜉(𝑡𝑡) and energy decay 𝜖𝜖(𝑡𝑡)



The enstrophy

• The enstrophy of a flow in a volume Ω is defined as

𝜁𝜁 𝑣⃗𝑣 = �
Ω
∇𝑣⃗𝑣 2 dΩ

• Here ∇𝑣⃗𝑣 2 = ∑𝑖𝑖,𝑗𝑗 𝜕𝜕𝑖𝑖𝑣𝑣𝑗𝑗
2

• For an incompressible flow with ∇ ⋅ 𝑣⃗𝑣 = 0 this is the same as the integral over the squared 
vorticity 𝜔𝜔 = ∇ × 𝑣⃗𝑣

𝜁𝜁 𝑣⃗𝑣 = �
Ω
∇ × 𝑣⃗𝑣 2 dΩ = �

Ω
𝜔𝜔 2 dΩ

• Also, for the incompressible Navier Stokes equation the enstrophy describes the dissipation of 
energy 

−
𝑑𝑑
𝑑𝑑𝑑𝑑

1
2�Ω

𝑣⃗𝑣 2 dΩ = 𝜈𝜈𝜈𝜈 𝑣⃗𝑣

• Comparing these two quantities can thus be used to test the accuracy of a simulation.



Gaining a computational advantage in runtime?

• Scaling is often assessed as a function of characteristic 
numbers like the Reynolds number

𝑅𝑅𝑅𝑅 =
𝐿𝐿
𝜂𝜂

4/3

• Here 𝐿𝐿 is the largest size of the energy containing eddies and 
𝜂𝜂 is the Kolmogorov microscale.

• Typically, numerically exact methods are expected to scale 
like 𝑅𝑅𝑒𝑒3𝐾𝐾/4 where 𝐾𝐾 is the number of spatial dimensions.

• The runtime scales as Re4𝜒𝜒99 which means favourable scaling 
for TDJ with 𝐾𝐾 = 2 where 𝜒𝜒99 ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. but not for the TGV 
with 𝐾𝐾 = 3 where it grows with an exponent of ≈ 0.71 for the 
two examples studied above.

• Note: we do not know the general scaling.

Schmidt number 𝜒𝜒99 required for a 99% accurate 
representation of a flow field. The blue diamonds are for a 
decaying TGV in 3D where 𝜒𝜒99 ∝ 𝑅𝑅𝑒𝑒0.71 for sufficiently large 
𝑅𝑅𝑅𝑅. The green dots arise from a 2D TDJ. Here 𝜒𝜒99 ∝ 𝑅𝑅𝑒𝑒0 for 
sufficiently large 𝑅𝑅𝑅𝑅.



Example: Lid driven cavity



CFD Examples – 2D driven cavity

• Time evolution starting from the 
fluid and the lid at rest. 

W. Y. Soh and J. W. Goodrich, Journal of 
Computational Physics 79, 113 (1988).



MPS algorithm for problems with boundaries in 2D

• The Navier Stokes equation is rewritten as

• With the stream function 𝜓𝜓 related to the velocity 
components as

• The vorticity 𝑤𝑤 is evolved according to

• where                              and

• in a 2-step predictor-corrector McCormack 
scheme.

• Finally, the stream function is updated by solving 
the Poisson equation ∇𝜓𝜓 = −𝑤𝑤.

M. Kiffner and DJ, Tensor network reduced order 
models for wall-bounded flows, Phys. Rev. Fluids 8, 
124101 (2023).



Boundary conditions enforced by walls

• We use ghost points that represent the 
boundaries with indices −1 and 𝐾𝐾

• The b.c. are

• From this we can get the bc for the vorticity

• For implementing these boundary conditions we 
need MPOs that extract lines or rows of values 
of a function

• For instance 𝑄𝑄𝑒𝑒 extracts function values at (𝐾𝐾 −
1, 𝑞𝑞) from a function

𝑄𝑄𝑒𝑒𝑓𝑓 𝑝𝑝,𝑞𝑞 = 𝑓𝑓𝑝𝑝,𝑞𝑞𝛿𝛿𝐾𝐾−1,𝑞𝑞

• 𝑄𝑄𝑒𝑒 is build from matrices

• And similar for all other terms that we need.



CFD Examples – Driven 3D Cavity

• Reynolds number 𝑅𝑅𝑅𝑅 = 1000, 

• Grid size 256 × 256 × 256

• Residuals after 3000 time steps

• Momentum equations: 𝜕𝜕𝑡𝑡𝑣⃗𝑣 ≈ 3.6 × 10−3

• Continuity equation: ∇ ⋅ 𝑣⃗𝑣 ≈ 1.0 × 10−2



CFD Examples – Driven 3D Cavity

• Reynolds number 𝑅𝑅𝑅𝑅 = 1000, 

• Grid size 256 × 256 × 256

• Residuals after 3000 time steps

• Momentum equations: 𝜕𝜕𝑡𝑡𝑣⃗𝑣 ≈ 3.6 × 10−3

• Continuity equation: ∇ ⋅ 𝑣⃗𝑣 ≈ 1.0 × 10−2

Simulation with 

𝜒𝜒max = 200 

corresponds to a compression of 

95.3%



Scaling compared to DNS calculations in 2D

• Simulations in 2D

Re = 24000

𝜂𝜂
𝐿𝐿

= 5.19 × 10−4

• Grid size required

211 × 211

M. Kiffner and DJ, Tensor 
network reduced order models for 
wall-bounded flows, Phys. Rev. 
Fluids 8, 124101 (2023).



Example: Magnus Effect



Body fitted coordinates – flow around a cylinder

• Generate a body-fitted mesh from a one-dimensional boundary point distribution for convex objects.
• Transform cartesian differential operators into curvilinear matrix product operators, using a given set of grid coordinates.
• Compute key flow characteristics, such as aerodynamic lift and drag coefficients and use to benchmark computations



Body fitted coordinates – flow around a cylinder

St =
�𝜔𝜔𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐
2𝜋𝜋𝑈𝑈∞

• Lift coefficient 𝐶𝐶𝐿𝐿

Nis-Luca van Huelst et al., arXiv:2507.05222



Body fitted coordinates – Magnus effect

Tangental velocity 𝑈𝑈𝑇𝑇 = 𝛼𝛼𝛼𝛼_∞

Nis-Luca van Huelst et al., arXiv:2507.05222 (2025)



Outline

MPS 
• Encoding grid functions
• Classical entanglement spectrum
• Turbulence correlations

CFD 
Examples

• MPS algorithm
• Jet formation and Taylor Green vortex
• Driven cavity
• Magnus effect

Hybrid
Optimization

• Hardware architecture
• Quantum network
• Generic cost function
• Proof of Principle 

Example



Tensor networks as a quantum programming paradigm

Variational quantum algorithms for 
computational fluid dynamics,
D Jaksch, P Givi, AJ Daley, T Rung
AIAA journal 61, 1885 (2023)



Hybrid Classical-Quantum Optimization – Architecture
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A. Peruzzo, et al., Nat. Commun. 5, 4213 (2014).
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Hybrid Classical-Quantum Optimization – Architecture
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Classical optimization
algorithm
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Minimize Cost
function

Our work: Extension to nonlinear problems M. Lubasch, J. Joo, P. Moinier, M. Kiffner & 
DJ, Phys. Rev. A 101, 010301(R) (2020).



The QNPU Quantum Network for cost function 𝒞𝒞

H H|0⟩

|𝟎𝟎⟩

|𝟎𝟎⟩

|𝟎𝟎⟩

|𝟎𝟎⟩

an
ci

lla
𝑁𝑁

 q
ub

it 
re

gi
st

er
s

Q
N

PU

OP1

OP2

OP3

OP4

CP

IP1

IP2

IP3

IP4

1 3

2

1. Prepare a variational state (∝ 𝑛𝑛)

2. Measure cost function via ancilla qubit 

3. QNPU - evaluate the cost function (∝ 𝑛𝑛)

1

2

3

𝒞𝒞 = 𝑓𝑓 1 ∗�
𝑗𝑗=1

𝑟𝑟

𝑂𝑂𝑗𝑗𝑓𝑓 𝑗𝑗

M. Lubasch, J. Joo, P. Moinier, M. Kiffner & DJ, Phys. Rev. A 101, 
010301(R) (2020).



The edge of chaos

• The Lieb-Robinson bound gives the speed at which effects of gate parameters spread across the system
• When cones overlap the system becomes overdetermined and early gates identical to random circuit
T. Hashizume, et al., Variational Quantum Computing at the edge of chaos, in preparation.

Depth 𝑑𝑑    →

W
id

th
 𝑏𝑏

1



Tripartite Mutual Information

𝐼𝐼3𝛼𝛼 𝐴𝐴:𝐵𝐵:𝐶𝐶 = 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐵𝐵 + 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐶𝐶 − 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐵𝐵𝐵𝐵  where 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐵𝐵 = 𝑆𝑆𝛼𝛼 𝐴𝐴 + 𝑆𝑆𝛼𝛼 𝐵𝐵 − 𝑆𝑆𝛼𝛼 𝐴𝐴𝐴𝐴 ,
𝑆𝑆𝛼𝛼 = tr 𝜌𝜌𝐴𝐴𝛼𝛼 /(1 − 𝛼𝛼) and 𝜌𝜌𝐴𝐴 = tr�A 𝜌𝜌

1



A quantum Nyquist-Shannon theorem

• We consider an amplitude encoded sin function in 𝑛𝑛 qubits with 𝑥𝑥 ∈ [0,1) and 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆

𝜓𝜓 = �
𝑖𝑖

sin 𝑘𝑘𝑥𝑥𝑖𝑖 |𝜎𝜎 𝑖𝑖 ⟩

• We rewrite this using a tensor train decomposition

• With tensors

• In the limit 𝑛𝑛 → ∞ we work out the reduced density operator of the 𝑞𝑞-th qubit

1



A quantum Nyquist-Shannon theorem

• We obtain for the reduced density operator

• This density operator converges to
lim
𝑞𝑞→∞

𝜌𝜌𝑞𝑞 = + 𝑞𝑞⟨+|

• exponentially with 𝑞𝑞 for 𝑞𝑞 > 𝑞𝑞𝑐𝑐 𝜆𝜆  with

𝑞𝑞𝑐𝑐 𝜆𝜆 = log2
𝜋𝜋
𝜆𝜆

• A qubit state + 𝑞𝑞⟨+| corresponds to linear interpolation and hence only 𝑞𝑞𝑐𝑐 qubits are required in the TT.

1



Example: The Weierstrass function

Weierstrass 𝑊𝑊(𝑥𝑥) = ∑𝑛𝑛 𝑎𝑎𝑛𝑛 sin 𝑏𝑏𝑛𝑛𝜋𝜋𝜋𝜋 , smooth for 𝑎𝑎 < 1
𝑏𝑏
 and fractal for 1

𝑏𝑏
< 𝑎𝑎 < 1. Here for 𝑏𝑏 = 5.

1



Trainability and Tripartite Mutual Information

𝐼𝐼3𝛼𝛼 𝐴𝐴:𝐵𝐵:𝐶𝐶 = 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐵𝐵 + 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐶𝐶 − 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐵𝐵𝐵𝐵  where 𝐼𝐼𝛼𝛼 𝐴𝐴:𝐵𝐵 = 𝑆𝑆𝛼𝛼 𝐴𝐴 + 𝑆𝑆𝛼𝛼 𝐵𝐵 − 𝑆𝑆𝛼𝛼 𝐴𝐴𝐴𝐴 ,
𝑆𝑆𝛼𝛼 = tr 𝜌𝜌𝐴𝐴𝛼𝛼 /(1 − 𝛼𝛼) and 𝜌𝜌𝐴𝐴 = tr�A 𝜌𝜌

1



Variational Quantum Algorithm2 3

P. Siegl et al., Tensor-Programmable Quantum Circuits for Solving Differential Equations, arXiv:2502.04425.

Termanova, et al., 
Tensor quantum 
programming, New J. 
Phys. 26, 123019 
(2024).



Measure cost function via ancilla qubit

H H

A

|0⟩

|𝜓𝜓⟩

2

A

• Controlled application of network 𝐴𝐴
𝑐𝑐𝑐𝑐 = 0 0  1 + 1 1  𝐴𝐴

• Hadamard applied to ancilla 𝐻𝐻 0 = + ∝ 0 + |1⟩
𝑐𝑐𝑐𝑐 + 𝜓𝜓 ∝ 0 𝜓𝜓 + 1 𝐴𝐴|𝜓𝜓⟩

• After the second Hadamard 𝐻𝐻 1 = − ∝ 0 − |1⟩
+ 𝜓𝜓 + − 𝐴𝐴 𝜓𝜓 = 0 𝜓𝜓 + 𝐴𝐴 𝜓𝜓 + 1 𝜓𝜓 − 𝐴𝐴 𝜓𝜓

• Measuring the ancilla qubit gives (using (𝜎𝜎𝑧𝑧)2 = 1)
𝜎𝜎𝑧𝑧 ∝ ⟨𝜓𝜓|𝐴𝐴 𝜓𝜓 + ⟨𝜓𝜓|𝐴𝐴† 𝜓𝜓

• Note that 𝐴𝐴 contains conditional networks of trial 
functions before IP2 to Ipn.



QNPU – create a nonlinear term3

   
Q

N
PU

X|0⟩ U

|0⟩

to ancilla

𝜓𝜓 1

U

𝜓𝜓 2

OP1

OP2

CP

IP1

IP2

• Encode single qubit function (all real)
𝑓𝑓1 = 𝑓𝑓2 = 𝑐𝑐0 0 + 𝑐𝑐1|1⟩

• Apply 𝑈𝑈 to first qubit
 0 1 → 𝜓𝜓 1 = 𝑐𝑐0 0 1 + 𝑐𝑐1 1 1

• The controlled operation 𝐴𝐴 is
𝐴𝐴 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇12 𝑈𝑈2

• The ancilla measurement yields

𝜓𝜓𝜓 𝐴𝐴 𝜓𝜓𝜓 = 𝜓𝜓𝜓 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇12 𝜓𝜓𝜓𝜓

 = ⟨𝜓𝜓𝜓| 𝑐𝑐0𝑐𝑐0 00 + 𝑐𝑐0𝑐𝑐1 01 + 𝑐𝑐1𝑐𝑐0 11 + 𝑐𝑐1𝑐𝑐1 10
= (⟨00|𝑐𝑐0 + 10 𝑐𝑐1 𝑐𝑐0𝑐𝑐0 00 + 𝑐𝑐1𝑐𝑐1 10  

 = 𝑐𝑐03 + 𝑐𝑐13

• By adding more copies we get higher powers

• Exercise: create the term 𝑓𝑓4 in the GPE.



QNPU – calculate a derivative3

QNPU

CP

IP1 OP2

|0⟩
|0⟩

⊕

⊕
⊕

⊕

⊕
⊕

⊕
⊕

This network forms the basis for working out derivatives numerically

• We can use the adder network 𝒜𝒜 to shift 
the function values by one This network 
takes

• The network input is the state

𝑓𝑓 = �
𝑖𝑖

𝑓𝑓𝑖𝑖|𝚤𝚤 ⟩

• where 𝚤𝚤 = 𝑖𝑖3𝑖𝑖2𝑖𝑖1𝑖𝑖0 is the binary 
representation of 𝑖𝑖.

• IP1 and turns it into 

𝑓𝑓′ = �
𝑖𝑖

𝑓𝑓𝑖𝑖+1|𝚤𝚤 ⟩ .

• The network thus evaluates

�
𝑖𝑖

𝑓𝑓𝑖𝑖∗𝑓𝑓𝑖𝑖+1



The adder network 𝒜𝒜 explained

• The least significant qubit 𝑖𝑖0 is at the top of the register and we assume the ancilla bit to be in state 1 , i.e. all of 
the ancilla controlled CNOT gates can be active.  

• If 𝑖𝑖0 = 1 then it is flipped to 𝑖𝑖0 = 0 by the first CNOT gate. It is then easy to see that all other CNOT gates will be 
inactive. Instead, if 𝑖𝑖0 = 0 it will be flipped to 𝑖𝑖0 = 1 by the first CNOT. 

• The upper of the two auxiliary qubits is set to 𝑐𝑐1 = 1 by the next CNOT, indicating a carry. The next CNOT then 
flips 𝑖𝑖1. 

• If this results in 𝑖𝑖1 = 0 no further action is necessary and all other CNOT gates acting on the register will be 
inactive. 

• Importantly, however, the last CNOT will reset the first carry qubit to 𝑐𝑐1 = 0 to ensure that it is disentangled from 
the register. 

• If 𝑐𝑐1 = 1 and 𝑏𝑏1 = 1 then further action is required and the second carry is set to 𝑐𝑐2 = 1 by the next CNOT to 
indicate this. The following two CNOT gates then flip 𝑖𝑖2 and 𝑖𝑖3 as required for the operation |𝚤𝚤⟩ → |𝑖𝑖 − 1⟩.

• When the ancilla is in state |0⟩ none of the CNOTs will act and hence the state of the quantum register will 
remain unchanged.

• The result on the previous slide then follows.



QNPU – multiplying the potential term

• In this case the internal QNPU network �𝑉𝑉 of 𝑁𝑁 auxiliary 
qubits creates a potential term of the form

𝑉𝑉 = �𝑉𝑉|𝟎𝟎⟩ = �
𝑖𝑖

𝑉𝑉𝑖𝑖|𝚤𝚤⟩

• Here the controlled network is given by

𝐴𝐴 = �
𝑛𝑛

CNOT𝑛𝑛𝑛𝑛′ �𝑉𝑉

• where the first index labels qubits in IP1 and the second 
index the corresponding auxiliary qubit.

• The measurement of the ancilla qubit gives thus

𝑓𝑓𝟎𝟎 𝐴𝐴 𝑓𝑓𝟎𝟎 = 𝑓𝑓𝟎𝟎 �
𝑛𝑛

CNOT𝑛𝑛𝑛𝑛′ 𝑓𝑓𝑓𝑓 = �
𝑖𝑖

𝑓𝑓𝑖𝑖2𝑉𝑉𝑖𝑖

3

The action of the CNOT gates can be 
understood by considering a 
computational basis state:

�
𝑛𝑛

CNOT𝑛𝑛𝑛𝑛′ 𝚤𝚤, 𝚤𝚤′ = |𝚤𝚤, 𝚤𝚤 ⊕ 𝚤𝚤′⟩



Proof of Principle: the non-linear Schrödinger equation

• Non-linear PDE

−
1
2
𝑑𝑑2

𝑑𝑑𝑥𝑥2
+ 𝑉𝑉 𝑥𝑥 + 𝑔𝑔 𝑓𝑓2 𝑥𝑥 𝑓𝑓 𝑥𝑥 = 𝐸𝐸𝐸𝐸 𝑥𝑥

• Cost function

𝒞𝒞 = 𝐾𝐾 𝑐𝑐 + 𝑃𝑃 𝑐𝑐 + 𝐼𝐼 𝑐𝑐

• We estimate 𝒞𝒞 from grid kinetic, potential 
and non-linear terms which leads to a grid 
error

⋅ 𝑐𝑐 = ⋅ + ℰgrid

• The error 𝜖𝜖grid ∝ 1/𝑁𝑁2

• Kinetic energy (ℎ𝑁𝑁 is the grid spacing)

𝐾𝐾 = −
1

2ℎ𝑁𝑁2
�
𝑘𝑘

𝑓𝑓𝑘𝑘∗ 𝑓𝑓𝑘𝑘+1 − 2 𝑓𝑓𝑘𝑘 + 𝑓𝑓𝑘𝑘−1

• Potential energy

𝑃𝑃 = �
𝑘𝑘

𝑓𝑓𝑘𝑘∗𝑉𝑉 𝑘𝑘 𝑓𝑓𝑘𝑘

• Nonlinear term

𝐼𝐼 =
𝑔𝑔

2ℎ𝑛𝑛
�
𝑘𝑘

𝑓𝑓𝑘𝑘4



Measuring the cost function

• Kinetic energy

𝐾𝐾 =
1 − �𝜎𝜎𝑧𝑧 𝑎𝑎𝑎𝑎𝑎𝑎

𝐾𝐾

ℎ𝑁𝑁2

• Potential energy (𝛼𝛼 rescales the potential)

𝑃𝑃 = 𝛼𝛼 �𝜎𝜎𝑧𝑧 𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃

• Nonlinear term

𝐼𝐼 =
𝑔𝑔

2ℎ𝑛𝑛
�𝜎𝜎𝑧𝑧 𝑎𝑎𝑎𝑎𝑎𝑎

𝐼𝐼

• Note that measuring the ancilla performs 
summation over all grid points at no extra 
computational cost

• Relative sampling error

𝜖𝜖𝑀𝑀𝑀𝑀𝑃𝑃 =
𝐶𝐶𝑃𝑃
𝑀𝑀

𝜖𝜖𝑀𝑀𝑀𝑀𝐾𝐾 =
𝐶𝐶𝐾𝐾
𝑀𝑀

𝑁𝑁
𝑁𝑁min

𝜖𝜖𝑀𝑀𝑀𝑀𝐼𝐼 =
𝐶𝐶𝐼𝐼
𝑀𝑀

𝑁𝑁
𝑁𝑁min

• 𝐶𝐶𝑋𝑋 is of order 1 in all cases

• 𝑁𝑁min is the minimum grid size required to 
obtain an accurate approximation of the 
solution.



Proof of Principle Example: Trapped BEC on 4 grid points

• Variational minimization of total energy

𝑔𝑔 = 104 𝑔𝑔 = 10 BEC in harmonic trap with a single 
variational parameter 𝜆𝜆
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