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~Si · ~Sj

What is the nature of the  
many body ground state        ?| 0i

Efficient Simulation of Quantum Many-Body Systems



the free-Cu21 magnetic form factor. Here the measured data indicate
longer-range correlations than the nearest-neighbour singlet model.
Figure 3c depicts a line scan of the dynamic structure factor (integrated

over 1 # Bv # 7 meV) along the (0, K, 0) direction. The nearest-
neighbour singlet model does not account for the observed scattering
intensity at the (0, 2, 0)-type positions.
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Figure 2 | Inelastic neutron scattering measured along symmetry directions
and at high-symmetry locations. a, b, Intensity contour plots of the dynamic
structure factor as a function of Bv and Q for the (H, 0, 0) direction (a) and the
(H, H, 0) direction (b). These directions are indicated by the thick black lines on
the reciprocal space map shown in d. Along the (H, H, 0) direction, a broad
excitation continuum is observed over the entire range measured. The colour
bar shows the magnitude of Stot(Q, v) in barn sr21 eV21 per formula unit.
c, Energy dependence of Stot(Q, v) measured at high-symmetry reciprocal

space locations. Data for Bv $ 1.5 meV were measured with Ef 5 5.1 meV,
whereas data for Bv # 1 meV were measured with Ef 5 3.0 meV for better
energy resolution (except those at C*, which were measured with
Ef 5 5.1 meV). Error bars, 1 s.d. Inset, energy dependence of Smag(Q, v) with
the non-magnetic scattering from the sample subtracted. Smag(Q, v) is
normalized to have units of eV21 per formula unit, consistent with the
magnetic structure factor defined in Supplementary Information. d, The
integrated areas in reciprocal space referred to a–c.
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Figure 3 | The measured dynamic structure factor along specific directions
in reciprocal space with comparison to the nearest-neighbour singlet model.
a, Smag(Q, v) along the (22, 1 1 K, 0) direction, indicated by the thick red line
on the reciprocal space map in d. Three energy transfers, Bv 5 2, 6 and 10 meV,
are shown. b, Smag(Q, v) along the (22, 1 1 K, 0) direction integrated over

1 # Bv # 11 meV. c, Smag(Q, v) along the (0, K, 0) direction, indicated by the
thick orange line on the reciprocal space map in d, integrated over
1 # Bv # 7 meV. The solid lines in b and c are the calculated equal-time
structure factors for uncorrelated nearest-neighbour singlets multiplied by
| F(Q) | 2. d, The trajectories in reciprocal space referred to in a–c. Error bars, 1 s.d.
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???

Spectroscopy provides information on excitations

S(~q,w) = Â
|f i

��hf |S+|ii
��2 d (w �wf +wi )

Mourigal et al - Nature Physics 2013

Magnetic field - Spin waves No magnetic field - Fractionalized spinons

Cu2SO4.5D2O

Mourigal et al, ’13

Dynamical structure factor:

1D quantum spin liquid: Fractional spinon excitations  
in the antiferromagnetic S=1/2 Heisenberg chain Copper Sulphate

S = 0S = 1S = 1

Efficient Simulation of Quantum Many-Body Systems



Simulating Quantum Thermalization 

Investigate whether/how closed quantum  
many-body systems thermalize:

⇢Block = ⇢Thermal

t | i

Ut = exp(�itH)

[non-integrable]

Closed quantum system

| i

[Srednicki, Deutsch, Rigol]



Simulating a Quantum Computer

|ψi⟩ |ψf⟩



The Hilbert space of a quantum many body system 
grows exponentially!

 
 
 
 
For N spin-1/2 particles: 2N states 
 
10 spins dim=1‘024 
20 spins dim=1‘048‘576  
30 spins dim=1’073‘741‘824 
40 spins dim=1‘099‘511‘627‘776 

| i =
X

j1,j2,...,jL

 j1,j2,...,jL |j1i|j2i . . . |jLi

Quantum Many-Body Systems



Matrix-Product States

Once we have an MPS representation, we can 
calculate (almost) everything exactly!

Matrix-Product States: Reduction of #variables dL ! Ld�2

ψj1,j2,…,jL ≈ ∑
α1,α2,…,αL−1

Aj1
α1

Aj2
α1,α2

…AjL
αL−1

αj = 1…χ

Many-body Hilbert space

| i =
X

j1,j2,...,jL

 j1,j2,...,jL |j1i|j2i . . . |jLi , jn = 1 . . . d



I) Entanglement and Matrix-Product States 

II) Time Evolving Block Decimation  

III) Density-Matrix Renormalization Group 

IV) Extracting topological invariants   

V) (isometric Tensor-Network States)

👈
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Bipartite Entanglement

A B

Product state (=non-entangled):

| ⇤ = 1

2

⇣
| �⇤A + | ⇥⇤A

⌘⇣
| �⇤B + | ⇥⇤B

⌘

| ⇤ = 1⌅
2

⇣
| �⇤A| ⇥⇤B + | ⇥⇤A| �⇤B

⌘
Entangled state

[Einstein, Rosen, Podolsky ’35 ]



Bipartite Entanglement

dLQuantum state in       dimensional Hilbert space
| i =

X

j1,j2,...,jL

 j1,j2,...,jL |j1i|j2i . . . |jLi , jn = 1 . . . d

Entanglement entropy as a measure for the  
amount of entanglement S = �

P
↵ ⇤2

↵ log⇤2
↵

...
A B

...
Decompose a state into a superposition  
of product states (Schmidt decomposition) 
                                                                           
                                                                      , | i =

X

i,j

Ci,j |iiA ⌦ |jiB =
X

↵

⇤↵|↵iA ⌦ |↵iB h↵|↵0i = �↵↵0



L R
(a) (b)

N

(d)(c)

Many body Hilbert space

Area law states

L R
(a) (b)

N

(d)(c)

Many body Hilbert space

Area law states

Area law for ground states of local (gapped) Hamiltonians  
in one dimensional systems

Bipartite Entanglement

All ground states live in a tiny corner of the Hilbert space!

S(L) = const. [Srednicki  ’93, Hastings ’07]

| i =
X

↵

⇤↵|↵iA ⌦ |↵iB

L R
(a) (b)

N

(d)(c)

Many body Hilbert space

Area law states

L



Example: |⇤� =
NAX

i=1

NBX

j=1

Cij |i�A|j�B =
X

�

�� |⇥��A|⇥��B

C =

0

B@
0.23 · · · 0.56
...

. . .
...

0.22 · · · 0.34

1

CA =

0

B@
0.23 · · · 0.56
...

. . .
...

0.22 · · · 0.34

1

CA
� = 1200

Matrix can represent an image (array of pixel)

⇡

Reconstruction of the matrix (image) from a small  
number of Schmidt states (SVD):

Tutorial: (A) SVD Compression



Tutorial: (A) SVD Compression

I) Analyse the Schmidt spectra of the images  
and how much they can be compressed 
 

II) How does the number of singular values needed  
to represent the image on its size? 

III) How does a product state look like as an image? 

http://go.tum.de/475840

http://go.tum.de/475840


Matrix-Product States

Coefficients in the many-body wave function: 
Order-L tensor: diagrammatic representation

�������� ���� ���� ���� ���� ���� ���� ����������

������������������

 j1,j2,j3,j4,j5 =

L R
(a) (b)

N

(d)(c)

Many body Hilbert space

Area law states

Successive Schmidt decompositions

�������� ���� ���� ���� ���� ���� ���� ����������

������������������

∑
α1,α2,…,αL−1

Aj1
α1

Aj2
α1,α2

…AjL
αL−1

| i =
dX

j1=1

dX

�=1

A[1]j1
� ⇤[1]

� |j1i|�i[2,...N ]L

MPS are tailored to describe 1D systems with an area law!

Ai,j =

∑
k

Ai,kBk,j =



MPS and the Canonical Form

A A A A A A A
[1] [2] [3] [4] [5] [6] [7]

From now on: Leave out site indices! 

. . . . . .| i :

MPS is not unique

=

Ãin➡       describes the same state!

Ãin = XAinX�1



MPS and the Canonical Form

Choose a convenient representation in Canonical Form: 
Bond index corresponds to Schmidt decomposition!

Write tensor         as product of        Ain
↵�

: Diagonal matrix with Schmidt values
: Tensor relating to Schmidt basis

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L
�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

| i =
�X

↵=1

⇤↵|↵iL ⌦ |↵iR with h↵|↵0i = �↵↵0

[Vidal ‘03] 



Schmidt states in terms of the MPS:

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

MPS and the Canonical Form

Orthogonality:
R

' '
' * * *



Efficient evaluation of expectation values:

MPS and the Canonical Form

h |On| i =

⇤2⇤2

�

�⇤

⇤2

�

�⇤

=usingh |On| i =

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

… h |On| i =

�

(d)

(b)

�

(a)

(c)

(e)
RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e)
RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e)
RL

' '
' � � �

L

L

…

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

�

(d)

(b)

�

(a)

(c)

(e) RL

' '
' � � �

L

L

* * * * * h |On| i =
h |On| i =



Efficient evaluation of correlation functions:

MPS and the Canonical Form

⇤2⇤2

�

�⇤

�

�⇤

�

�⇤

�

�⇤

�

�⇤

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

TR

h |OmOn| i =
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Ordered Quantum Disordered g/J

H = �
X

j

(J�z
j�

z
j+1 + g�

x
j )

m
=

h�
z
i

Quantum phases at            :  Transverse field Ising model 
with       symmetry

T = 0
[Elliott et al. ‘70]Z2

Transverse Field Ising Model

Entanglement of the ground state depends on .g/J



Time Evolving Block Decimation 

Assume we have a Hamiltonian of the form

H =
X

j

h
[j,j+1]

| 0i = lim
⌧!1

exp(�H⌧)| ii
|| exp(�H⌧)| ii||

Time evolution in imaginary time 

| ti = exp(�iHt)| t=0i

Time evolution in real time 



Consider a Hamiltonian H =
X

j

h
[j,j+1]

Time Evolving Block Decimation 

[F [r], F [r0]] = 0 ([G[r], G[r0]] = 0)
[G,F ] 6= 0

We observe 
but

F F F
G G

H=F+G

F ⌘
X

even j

F [j] ⌘
X

even j

h[j,j+1]

G ⌘
X

odd j

G[j] ⌘
X

odd j

h[j,j+1]

Decompose the Hamiltonian as 

[Vidal ‘03]



Apply Suzuki-Trotter decomposition of order p 
  
 
with                         ,                                 , etc.

exp (�i(F +G)�t) ⇡ fp [exp(�F �t), exp(�G�t)]

f1(x, y) = xy f2(x, y) = x1/2yx1/2

Time Evolving Block Decimation 

UF =
Y

even r

exp(�iF [r]�t)

UG =
Y

odd r

exp(�iG[r]�t)

Two chains of two-site gates

Each gate affects the state only locally



Time Evolving Block Decimation algorithm (TEBD)

Time Evolving Block Decimation 

How do we get the original form back?

[1] [1] [2]

[2]

[3] [3] [4] [5] [5] [6]

[4]

[1] [1] [2]

[2]

[3] [3] [4] [5] [5] [6]

[4]



Time Evolving Block Decimation 

Time Evolving Block Decimation (TEBD) algorithm

ΓA ΛA ΓB ΛBΛB(i)

(ii)

Θ

ΛA(iii) X Y~

SVD

Θ Θ~

U

Θ~

(iv) ΓA ΛA ΓB ΛBΛB ~ ~ ~

 (    )-1
ΛAX Y~ΛB ΛB

ΛB -1

ΛB (    )

truncation
A B CB C

A B C

A C

A B CB C

/ d3�3

[Vidal ‘03]



Assume that       is translational invariant and : 
infinite TEBD (iTEBD)

L = ∞| i

�[2r] = �A, �[2r] = �A, �[2r+1] = �B , �[2r+1] = �B

� � � � � � �������� � � � �A B B B BA A A A A

Partially break translational symmetry to simulate  
the action of the gates

Translationally invariant, infinite systems!



Tutorial: (B) TEBD

I) Check the convergence of the code for different 
parameters (number of iterations, , ). 

II) Evaluate the phase diagram of the transverse field Ising 
model by plotting the magnetization, correlation length) 

III) Check the stability of the transition by adding new terms 
to the Hamiltonian:  and 

IV) Plot the entanglement growth following a global quench.

χ dτ

∑
i

σx
i σx

i+1 ∑
i

σz
i

http://go.tum.de/475840

http://go.tum.de/475840
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Density Matrix Renormalization Group (DMRG)

DMRG: Find the MPS representation of the ground 
state of a given Hamiltonian variationally

‣Much faster convergence than TEBD

‣Long range interactions can be  
easily implemented

‣Similarly to TEBD, it allows to work directly in the 
thermodynamic limit

[White ’92]



Density Matrix Renormalization Group (DMRG)

�������� M M M M M

�������� M M M M M
(b) � � � � � � ����

(a)

���� � � � �

�������� M M M M M
(c) � � � � � � �������� � � � �

� � � � � �
��������

� � � �* * * * *

Matrix-Product Operators (MPO):  Generalization of MPS

𝒪i1i2…iL, i′ 1,i′ 2…i′ L
=



Density Matrix Renormalization Group (DMRG)

MPO representation of Ô =
X

i

⇣
ÂiB̂i+1 + B̂iÂi+1

⌘



Density Matrix Renormalization Group (DMRG)

MPO representation of Ô =
X

i

⇣
ÂiB̂i+1 + B̂iÂi+1

⌘



Density Matrix Renormalization Group (DMRG)

Find the ground state iteratively 
 
 
 
 
 
 
 
by locally minimizing energy of                    (e.g., Lanczos)

[1] [2] [3] [4] [5] [6] [7]

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

E =

| 0i :

H

h 0|

A A A A A A

A A A A A A[1] [2] [3] [4] [5] [6] [7]

Λ

Λ

H↵i�;↵0i0�0

Much faster convergence than TEBD + allows for long 
range interactions!

[1] [2] [3] [5] [6] [7]

⇤ ⇤ ⇤ ⇤ ⇤

E =

A A A A A A

A A A A A A[1] [2] [3] [5] [6] [7]

H↵i�;↵0i0�0

H↵i�;↵0i0�0
H↵i�;↵0i0�0
H↵i�;↵0i0�0

H↵i�;↵0i0�0H↵i�;↵0i0�0
H↵i�;↵0i0�0

⇤



Density Matrix Renormalization Group (DMRG)

ΓA ΛA ΓB ΛBΛB
(i)

(ii)

ΛA
(iii)

X Y

(iv)
ΓA ΛA ΓB ΛBΛB

~

~ ~ ~

 (    )-1

SVD

Θ~

ΛAX Y~ΛB ΛB

ΛB -1

ΛB (    )

=
Θ~

E0L R

L

R

~

~

ΓAΛB ~

(Γ  )A *ΛB ~

ΓBΛB~

(Γ  )B *ΛB~

Θ~

M M

Θ

(v)

ΓA ΛA ΓB ΛBΛB
(i)

(ii)

ΛA
(iii)

X Y

(iv)
ΓA ΛA ΓB ΛBΛB

~

~ ~ ~

 (    )-1

SVD

Θ~

ΛAX Y~ΛB ΛB

ΛB -1

ΛB (    )

=
Θ~

E0L R

L

R

~

~

ΓAΛB ~

(Γ  )A *ΛB ~

ΓBΛB~

(Γ  )B *ΛB~

Θ~

M M

Θ

(v)

truncation

A B CB C

A B CB CA B C

A C

A B

C C

A B

C C



Tensor Network Python (TeNPy)

What is TeNPy

‣Python 3 library for simulations with tensor network  
https://github.com/tenpy/tenpy
‣Object oriented, modular structure, and easy to install 
‣HTML documentation  
https://tenpy.readthedocs.io/en/latest/ 
‣(in)finite DMRG, TEBD; TDVP 

Johannes Hauschild

https://github.com/tenpy/tenpy
https://tenpy.readthedocs.io/en/latest/


Tensor Network Python (TeNPy)

Example: DMRG

Hauschild and FP, arxiv:1805.00055

http://arxiv.org/abs/1805.00055


Finite Entanglement Scaling

Finite entanglement scaling: Entanglement and correlation 
length are always finite in an MPS

[FP,  Mukerjee, Turner, and Moore, PRL 102, 255701 (2009)]



Tutorial: (C) TeNPy DMRG

I) Get familiar with the TeNPy interface:  
https://tenpy.github.io  

II) Find the phase transition by plotting the 
magnetization as function of  

III) Extract the central charge using “entanglement 
scaling”: 

g

S =
c
6

log ξ + const

http://go.tum.de/475840

https://tenpy.github.io
http://go.tum.de/475840
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Topological Phases of Matter

“Non invertible”

“Chiral top.”

-FQHE
-Toric Code
-Spin Liquids

-IQHE 
-Chern Insulator

Anyons

Chiral Edge Modes

“Trivially disordered”

“Symmetry protected top.”
-Topological Insulators
-Haldane Phase

Symmetry Fractionalization

“Symmetry broken”“SET”

All phases can be identified using DMRG!



(Fractional) Chern Insulators

[Haldane ‘88] D. Sheng, Z.-C. Gu, K. Sun, and L. Shen ‘11 
N. Regnault and B. A. Bernevig ‘11 
S. Kourtis, T. Neupert, C. Chamon, and C. Mudry, ‘12 
S. Kourtis, J. W. F. Venderbos, and M. Daghofer ‘13 
….

Chern Insulator ( ): Lattice version of the  
Integer Quantum Hall Effect

Fractional Chern Insulator (e.g., ): Interactions  
are important!

ν = 1

ν = 1/3



DMRG on cylinders with circumference up to L = 12

2D physics at cost of long range  
interaction in 1D representation! 

‣MPO representation of the Hamiltonian  
(bond dimension scales polynomially with )
‣Area law: MPS dimensions of the ground state grows 
exponentially with !

L

L

DMRG for 2D Systems 

Grushin,  Motruk, Zaletel, FP,  PRB 91, 035136 (2015).



Chern Insulators

Laughlin charge pump

‣Generate flux  using complex  
hopping at the boundary 

‣Start from  and adiabatically insert a flux 

‣Measure the charge pumped from left to right 

ϕy

ϕy = 0 2π

0.0 0.5 1.0 1.5 2.0
©y/º
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<
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Grushin,  Motruk, Zaletel, FP,  PRB 91, 035136 (2015).



Fractional Chern Insulators
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Trivial
CI

FCI
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b)

�y/⇡

ν = 1/3

Laughlin charge pump

Grushin,  Motruk, Zaletel, FP,  PRB 91, 035136 (2015).



Fractional Chern Insulators: Top. Entanglement 

Intrinsic topological order: Gapped quantum phases  
that are robust to any small (local) perturbation

ei�

[Wen ’90]

Characterized by quasiparticle excitations   
that obey fractional statistics “anyons”

A

B

| i =
P

↵
p
p↵ |�A↵ i |�B↵ i

S = �
P

↵ p↵ log p↵

Abelian: � = log(
p
#anyons)

�
[Kitaev and Preskill ’06, Levin and Wen ‘06]

S = ↵L� �‣Topological entanglement entropy     :
‣Topological degeneracy on torus/cylinder (= number of anyons)



Topological entanglement in the FCI phase

log
p
3

S = ↵L� �

Fractional Chern Insulators: Top. Entanglement 

Grushin,  Motruk, Zaletel, FP,  PRB 91, 035136 (2015).



Fractional Chern Insulators: Chiral Edge States 

⇢red =
X

↵

exp(�✏↵)|�↵ih�↵|

[Li & Haldane ‘08]

Chiral edges states

Grushin,  Motruk, Zaletel, FP,  PRB 91, 035136 (2015).



Tutorial: (D) TeNPy Entanglement Spectrum

I) Calculate the entanglement spectrum of the 
Haldane model. Can you get the right counting? 

II) Calculate the expectation value of the charge 
density operator and explore the regime of 
large interactions. 
 

http://go.tum.de/475840

http://go.tum.de/475840


Tutorial: (E) TeNPy Laughlin Pump

I) Explore a few points in the phase diagram of the 
Haldane using the Laughlin pump.

II) Open ended: Can you find parameters to 
stabilize an FCI? 

http://go.tum.de/475840

http://go.tum.de/475840


M. P.  Zaletel, R. S. K. Mong, FP, PRL 110, 236801 (2013).

Fractional Quantum Hall

Orbitals in first Landau level are localized along  
the cylinder: Quasi 1D model

x

y B

[Tao & Taoless 88, Haldane & Rezayi ’94; Bergholtz et al. ’05,  Seidel et al. ’05] 

Coulomb

|0 0 1 0 1 0 0 i

Density Matrix Renormalization Group 
to simulate FQHE on infinite cylinders

| 0i : . . . . . .B B B B B B B

Bin
↵�



Fractional Quantum Hall

Topological entanglement entropy of the FQHE with Coulomb 
interactions (“minimally entangled states”)

S = ↵L� �

⌫ = 1/3 ⌫ = 7/3



Density profile for Fibonacci 
anyons with charge e/5

x/`B
y/`B

……

Fractional Quantum Hall



Fractional Quantum Hall

…

Extracting topological content by adding a “twist” 
 
 
 
 
 
 

Momentum polarization: topological spin,  
central charge, Hall viscosity

x

y B

L � ⇠

…



I) Entanglement and Matrix-Product States 

II) Time Evolving Block Decimation  

III) Density-Matrix Renormalization Group 

IV) Extracting topological invariants   

V) (isometric Tensor-Network States) 👈

Tensor Networks and the Many-Body Problem



Canonical form: Use the gauge degree of freedom (                   ) 
to find a convenient representation 

A[1] A[2] Λ[3] B[4] B[5]

Aj = XMjX−1

A

A*
=1

B

B*
=1 (Isometries)

ΛΓ⏞ ΓΛ⏞

Matrix-Product States 

Matrix-product states (MPS): Reduction of the number 
of variables: [M. Fannes et al. 92] dL ! Ld�2

 j1,j2,j3,j4,j5 ⇡

|ψ⟩ = ∑
α,β,j

Λj
α,β |α⟩ | j⟩ |β⟩

Center matrix     represents wave function  Λ

(orthogonal states                )| j⟩, |α⟩, |β⟩

=
M[1] M[2] M[3] M[4] M[5]

Mj
α,β = α β

M

α, β = 1…χ
j = 1…d

j



‣Capture 2D area law* 😊

‣Difficult to handle numerically: 
Exact contraction of the 2D network  
is still exponentially hard 🙁 

Tensor Network States in 2D

How to generalize the MPS approach to 2D? 

 j1,j2,j3,j4,j5 ⇡ M[1] M[2] M[3] M[4] M[5]

MPS capture 1D area law → Exponential scaling in 2D

Tj
α,β,γ,δ =

‣Tensor Network States (TNS)
[Maeshima et al. ’01, Verstraete and Cirac ’04]



Isometric Tensor Network States in 2D

Recall: Canonical form of 1D MPS

A[1] A[2] Λ[3] B[4] B[5] A

A*
=1

B

B*
=1 (Isometries)

Isometric TNS

A[1] A[2] Λ[3] B[4] B[5]

‣ Isometric tensors are  
efficiently contractable

‣Orthogonality center column is a  
1D MPS: Standard DMRG techniques  

‣Subset of  TNS: Unclear what its  
variational power is!   

[Zaletel and FP, PRL 124, 037201 (2020)]



Isometric Tensor Network States in 2D

Recall: Canonical form of 1D MPS

A[1] A[2] Λ[3] B[4] B[5] A

A*
=1

B

B*
=1 (Isometries)

Isometric TNS

A[1] A[2] Λ[3] B[4] B[5]

‣Subregions with only outgoing  
arrows have isometric  boundary maps

‣Causal structure: time flows opposite  
to the direction of the arrows

[Zaletel and FP, PRL 124, 037201 (2020)]



Recall: 1D MPS                                  solved by QR or SVD ΛℓB[ℓ+1] = A[ℓ]Λ[ℓ+1]

Not possible for 2D TNS as it would destroy the locality of Λ

Solve the variational problem: 

(a)

(b)

(i) (ii) (iii) (iv)

..

(a)

(b)

(i) (ii) (iii) (iv)

..

Λ[ℓ] A[ℓ] Λ

min

A[1] Λ[2] B[3] B[4]A[1] A[2]ΛB[3] B[4]

Isometric Tensor Network States in 2D

How to shift the orthogonality center?

A[1] A[2] Λ[3] B[4]

[Zaletel and FP, PRL 124, 037201 (2020)]



Sequential splitting based on disentangling:  “Moses Move” (MM)

Isometric Tensor Network States in 2D

MM MM

..

[Zaletel and FP, PRL 124, 037201 (2020)]



�������� M M M M M

�������� M M M M M
(b) � � � � � � ����

(a)

���� � � � �

�������� M M M M M
(c) � � � � � � �������� � � � �

� � � � � �
��������

� � � �* * * * *

⇤ ⇤

Finding the disentangler

Variationally disentangle the state:  
minimize Renyi entropies                            

�������� M M M M M

�������� M M M M M
(b) � � � � � � ����

(a)

���� � � � �

�������� M M M M M
(c) � � � � � � �������� � � � �

� � � � � �
��������

� � � �* * * * *

�������� M M M M M

�������� M M M M M
(b) � � � � � � ����

(a)

���� � � � �

�������� M M M M M
(c) � � � � � � �������� � � � �

� � � � � �
��������

� � � �* * * * *

�������� M M M M M

�������� M M M M M
(b) � � � � � � ����

(a)

���� � � � �

�������� M M M M M
(c) � � � � � � �������� � � � �

� � � � � �
��������

� � � �* * * * *

⇤ ⇤

| ̃i :
⇢̃red. :

⇢̃red. :

⇢̃2red. :Tr⇢̃2red. :

‣ Other Rényi entropies 
can also be minimized

⇢̃ :

...
A B

...

S2 = � lnTr⇢2red.

Ubond

[Evenbly & Vidal ’09]



Finding the disentangler

Role of the disentangler : Variational vs. Moses Move:

MM MM

.. η

[Zaletel and FP, PRL 124, 037201 (2020)]



Convert quasi 1D MPS to isometric TNS

(a) MM MM

(b)

‣ Sequentially disentangle 
the state

‣ Efficient compression

“Peel off ” layers from MPS representation of 2D state
(a) MM MM

(b)

(a) MM MM

(b)
2D transverse field  
Ising Model (           ) g = 3.5

H = − ∑
⟨i,j⟩

σz
i σz

J − g∑
i

σx

[Zaletel and FP, PRL 124, 037201 (2020)]



(a) (b)

(c)

(I) Time evolution of 2D Hamiltonians (TEBD2) 

Sequentially apply 1D Time-Evolving Block Decimation (TEBD) 
algorithm on the center columns/rows: 2nd order [Vidal ’03]

(a) (b)

(c)

2D transverse field  
Ising Model (           ) g = 3.5

H = − ∑
⟨i,j⟩

σz
i σz

J − g∑
i

σx

Imaginary time 
evolution: |ψ0⟩

…�1,1

[Zaletel and FP, PRL 124, 037201 (2020)]



2D transverse field  
Ising Model (           ) g = 3.0

H = − ∑
⟨i,j⟩

σz
i σz

J − g∑
i

σx

(II) Variational optimization (DMRG2) 

Iteratively minimize the 
energy by sequentially 
optimizing the isometries 

…

[Lin, Zaletel and FP; work in progress]



(III) Dynamical spin structure factors from isoTNS

Real time evolution of                                    for 
the transverse field Ising model (paramagnetic phase)

|ψ0(t)⟩ = e−iHt σy |ψ0⟩

‣ Good convergence  
at small bond  
dimension χ

⟨σ
z ⟩

[Lin, Zaletel and FP; work in progress]



Numerical calculation of the dynamical structure factor

(1) Find the ground state        : DMRG2

(2) Time evolve             to obtain 
           

| 0i

C(x, t)σy
0 |ψ0⟩

with

Slow growth of entanglement: Long times!

[Lin, Zaletel and FP; work in progress]

S(k, ω) = ∑
x

∫
∞

−∞
dt e−i(kx+ωt)C(x, t)

C(x, t) = ⟨ψ0 |σy
x(t)σy

0(0) |ψ0⟩

(III) Dynamical spin structure factors from isoTNS



[Lin, Zaletel and FP; work in progress]

Dynamical structure factor: Transverse field Ising
H = − ∑

⟨i,j⟩

σz
i σz

J − g∑
i

σx

(III) Dynamical spin structure factors from isoTNS



[Lin, Zaletel and FP; work in progress]

Dynamical structure factor: Kitaev model

H = J ∑
⟨i,j⟩α=x,y,z

σα
i σα

j

[Knolle et al. 13]

(III) Dynamical spin structure factors from isoTNS



Thank You!

https://github.com/tenpy/tenpy
Python  toolbox for MPS/TPS simulations:

Lecture notes on MPS: 
Hauschild and FP, arxiv:1805.00055

I) Entanglement and Matrix-Product States

II) Time Evolving Block Decimation 

III) Density-Matrix Renormalization Group

IV) Extracting topological invariants  

V) (isometric Tensor-Network States)

Tensor networks and the many-body problem

http://arxiv.org/abs/1805.00055

