
Adduction

In this lecture
,
we will show that :

- Quantum circuits can be described in terms of

tensor networks .

- Tensor networks provide a common language
for classical and quantum algorithms .

- In certain cases
,
the use of a quantum computer

may allow for exponential speed ups in tensor network

contraction



Aand canonical form revisited

Let us start by reminding ourselves of the general

ideas of MPs, the diagramatic notation , and canonical

form .
For concreteness we will consider only spin-

degness of freedom -

Main idea is to represent/approximate the many-body

quantum states by the product of tensors (matrices in
ID)

.

That is
, for a quantum state of N Spin-Y ,

147 = 2 Rij...k (ij
... k3

,

ij - - k = 4 , b

we can write the probability amplitudes as

~

Yij.. n = Hel about ...
- d

I
may be an equality
for particular states ar

for certain band dimension X

The state is now written as a product of tensors

physical index
L- dimension di=2
I
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↑
virtual indices

dimension Xi
,
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Given the MPs
,
our goal is typically to compute

local observables that correspond to measurable

quantities , e . g .

<4182147 ar <410Y14)

*
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And the beauty of using MPS is that the computational

cost is polynomial in both the number of sites N

and the band dimension Kimox
,
in contrast to the

brute-force exponential cost in N
.

Canonical farm ric form
-

There is a gange freedom in how me specify the

tensors in the MPS
,
but there are particularly

useful canoical farms .

These have two conditions
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If we relax the second condition them we get the

slightly more general isometric form .
To deal with

the isametric form me can introduce a new arrow

notation
, namely

Asometric I
sometric

- -

some) = I (1=
S

The convention of the arrows is such that the

total dimension of ingoing arrows outgoing arrows .

By grouping legs , we can talk about isometric matrices

Let A be a MXN hatrix with MIN

then A is an isometry if-I PateA A = 4vxw and

where Puxn is a projector (p= P with rank(P)=N)

Also note that
Note far an MPS

x

: os
that we assume .

-diX: Xi+ 1 ↓ Xi+ 1 rank(P) = N

Similarly X; -diXiti
di

far MPS ,

otherwise

there is redundancy
in the MPS ·



canonical form and isametric form allow us to

more efficiently compute observables
.

E. g .
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amCircuits

Quantum circuits are the leading model for

quantum computing .
Just like with tensor networks

,

it is typical to work with diagrams . Typically

they consist of three parts :

- an initial state
, normally the product strate

1000 ... 00) ~1449 ... 447 Note we typically
deal with qubits

-unitary gates (operators ( where 10) ~ IT7

117 -(b)
- Measurements .

An example quantum circuit that creates and

measures the Bell State 143 = =(100) + 1117)

Hadamard gateFif)-(Hezloo
Measurement

Initial - result collapses

⑧

-
10 -

- onto computational⑥E 6*state basis states

100) = 10) x 10)
-> 10)- 100)

,
1013

,
1107

,
(11)

d

- I

- -time

artevisnew state ==- cor-i , i I147 I

For our purposes we will ignore the subtleties with

measurement. Initial state + unitary gates = new state .

Assume me can extract (414) or [412Y -Y 14)



In anticipation ,
let us denote a general unitary

using arrow notation , it.

where unitarity L
L

: is = I-
-

I
-

unitary dig's =-< -

Note that a unitary is an isometry where the

incoming and outgoing dimensions match .

- Hadamard had I ingoing /outgoing -> ->

- NOT had 2 ingoing/outgoing
Move generally , a quantum circuit is of the

farm
tensor network

acircuit en

↑ T-0 - ⑧-~ L

⑧
L -H)I -> ~ -

I ↑-
- -

-I-I L

·

o⑧ ⑳
L - ~~ +

10) 10) 10) 10) 10) 0 0 ⑧ ⑧ O

Unitary circuit is an tensor network in isametric

form where unitary gates have equal number of

incoming and outgoing legs .

Note : I will typically draw my unitary circuits with

time going vertically ,
which is not standard !



MeriMPS to sequential quantum circuits

We can do beter than simply noting that we can

interpret quantum circuits as tensor networks .

There is an exact mapping between MPS and certain

Sequential quantum circuits
.

let us start with an MPS in left comical

form
↑ + + + + 4

-

010+0+0+0 >0e

And consider a single isometric tensor . We will

consider band dimensions Xi ,xit , that are powers of 2

for simplicity . Note : We can embed a tensor

in one of the power of 2
We can then promote form . We embed each matrix
these isometries to

as the upper left block and

unitaries + projectors place a maximal rank projector

W

diLin the bottom right block .

di t 4 x 8

3
It xOxi iii)mod-

-

Xi Xi+ 1 so I
dim xi+di-Xi+

we can choose the projector wil .g .

to be (2 , 0, 0.... ] ,

and then use QR-decomposition to find the

corresponding unitary . It will be easiest to demonstrate

this when me work through an explicit example .



the MPS can then be written as

--Oesplit 1projector
into 2

contractions Miqubits it
Consider an example .

-

Xproj =*Focussing on one tensor

~2

- -

!



EitExampleState

The GHE state 147 = (((+4 ...4 + 166 .. x)
= (100 ... 0) + 11 .... k)

Is exactly represented by a X= 2 MPS

0+ ...
da=* t

where the MPS tensors are

A(* (1 , 0) As = (88) Asi = =(i)

A
*3
= (0

, 1) A(b = (8i) Ac = =(i)

The easiest unitary to find corresponds to A" since

this is already unitary

A = (1 , 0)

u
= (i) Al= (0

,
1)

the first unitary is the identity 4 = /



Let's next consider the unitary corresponding to Ai)

↑
-

+
=~ =(8)

↳02
↳ 1 0 O C

-

is U= I00 o C I 1x = (8 : )⑧ 0 C ⑧

O 1 ⑧ C

e

↑
need to find two columns
such that all columns

are orthonormal

We can find missing columns by Gram-Schmidt .

Equivalently , randomly fill columns and use QR-decomposition

M = QR , Q-unitary
,
R-upper triangular .

The choice of unitary is itunique !

One choice that works is

u = S ie. F = *b= NOT
107 10)

the final mutary to find corresponds to Al .

.
·

: AM= (d)
- = u = lo I

& I =( = (i)2 - &

Y I W ⑱

A unitary that works is

n = / ) = croTeH ie !=



Finally me end up with the quantum circuit

-
N

10) 10) 10) (0) 10) 10)

we can easily check that this quantum circuit
does indeed prepare the GHE state .

In fact , our first Bell State
circuit was a

special case of this circuit with N=2

↑#
I

IOS 107



mentumCircuits ?

So why have we bothered making this connection

between tensor networks and MPS ?

How can we use it ?

One reason is that is valuable to have a common

language .
It may allow

us to take lessons learnt

from MPS and TNS
and apply them to quantum

circuits
,
and vice versa .

However , there is a much more direct reason .

A quantum computer can perform certain tensor

network contractions exponentially more efficiently
than classical computers .

To see this
,
let's do the reverse of what we

did previously and write down a quantum circuit

and map back to
MPS

·
Consider the following

type of sequential circuit
-

+ + + + +4+ + +- - o070707070701010

X= 8
-

-



The circuit I have drawn is a subset of MPS

with X= 8 .

More generally if I use M sequential layers , then

this is a subset of MPS with X = 24 .

It has 0(MN) number of parameters , whereas the

x= 24 MPs has 0(XN) = 0(4YN) parameters .

Nevertheless
,
as long as NLM

,
the cost of

classically contracting this network scales with X= 2M .

However , on the quantum computer , we need

N qubits and a runtime that is proportional to

N+M
.

This is an exparential improvement !

This is a type of "sparse" quantum-Mrs that

can be efficiently contracted on a quantum computer .

These states are physically relevant for non-equilibrium

dynamics .

As a second example consider the shallow brickwall

circuits These are particularly efficient on

quantum computers as they use nearest-neighbour
2-qubit gates and are fixed depth

↑ + + yy + + + +
00-07070-Yo the is actually a subcat

of sequential circuits !



By limiting the quantum computing time to 0(2)
,

me have introduce an additional restriction on the

state .

There are no correlations

between the red qubits .

! Since me start from a

product state , correlations

can build up only if the
Il &

backwards light cones overlap .

This type of circuit has a strict correlation length

instead of the exponential decay of general MPS .

·



Example: Crossing a topological phase transition
Adam Smith, Bernhard Jobst, Andrew G. Green, and Frank Pollmann [Phys. Rev. Research 
4, L022020 (2022)]



Example: Quantum-TEBD
Sheng-Hsuan Lin, Rohit Dilip, Andrew G. Green, Adam Smith, Frank Pollmann [PRX 
Quantum 2, 010342 (2021)]



Example: Infinite Quantum-TEBD
Nikita Astrakhantsev, Sheng-Hsuan Lin, Frank Pollmann, Adam Smith [arXiv:2210.03751] 
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