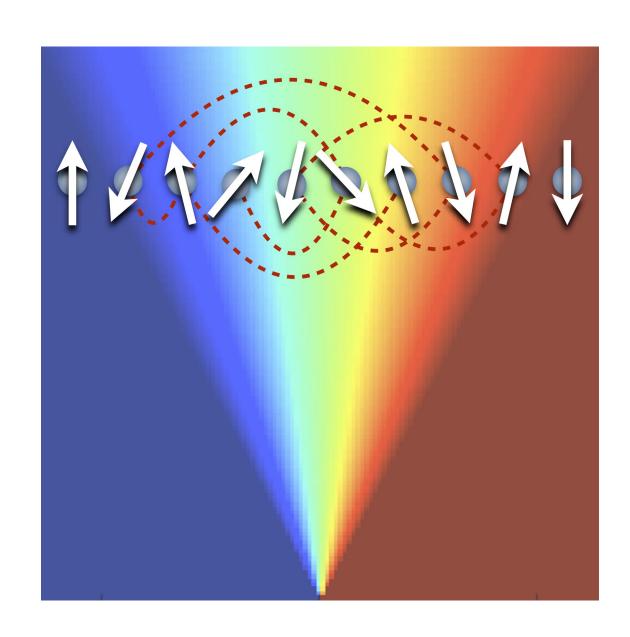
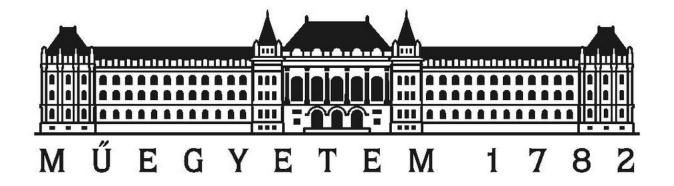
Random unitary circuits as solvable models of generic quantum dynamics



Tibor Rakovszky

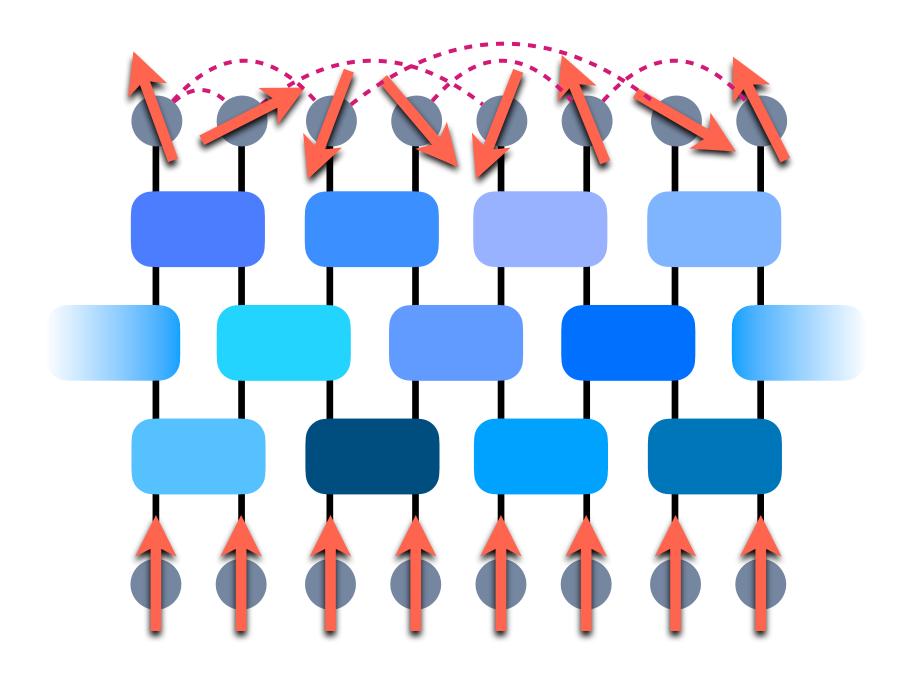


Plan

Introduction: Closed many-body systems far from equilibrium

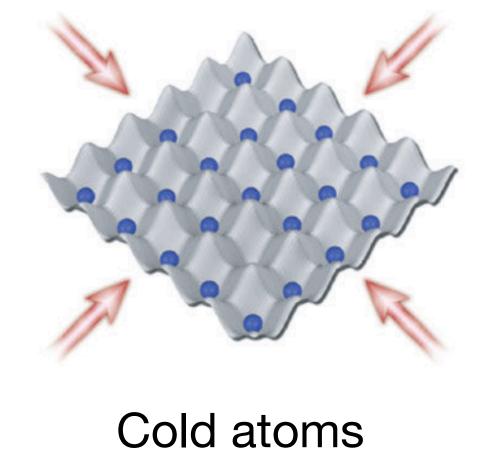
Part 1: Haar random circuits as solvable models

Part 2: Symmetries, measurements and all that



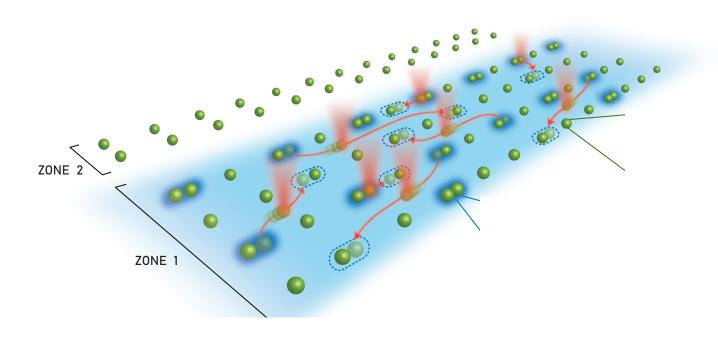
Artificial quantum many-body systems

- (Analog) quantum simulators / (Digital) quantum computers
- Well-isolated from environment
- Detailed control over interactions and initial states
- Locally resolved measurements

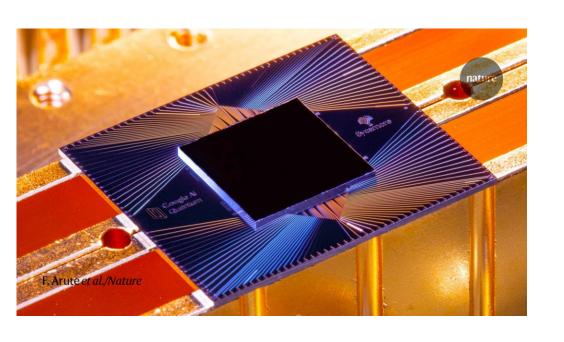


© 2023 Quantinuum. All rights reserved.

Trapped ions



Rydberg arrays



Superconducting circuits

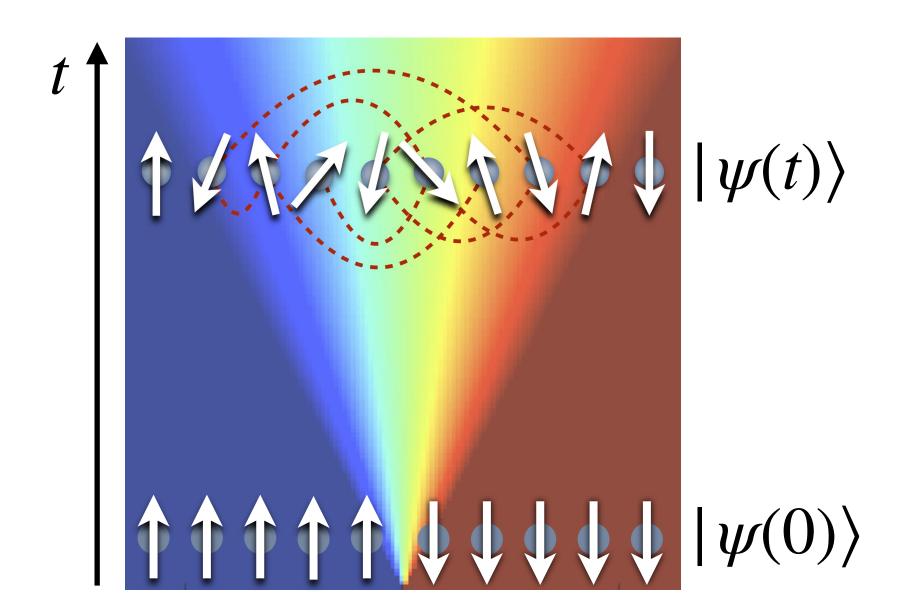
Dynamics in closed quantum many-body systems

$$|\Psi(t)\rangle = e^{-i\int \mathrm{d}t \hat{H}(t)} |\Psi(0)\rangle = \hat{U}(t) |\Psi(0)\rangle$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$N \text{ qubit} \qquad \text{Evolving with} \qquad \text{Simple (e.g. uncorrelated)}$$
 Quantum correlations are expenses at each chyrhamiltextillar and spreadtish statace

Lieb-Robinson theorem: local interactions lead to emergent "speed of light"

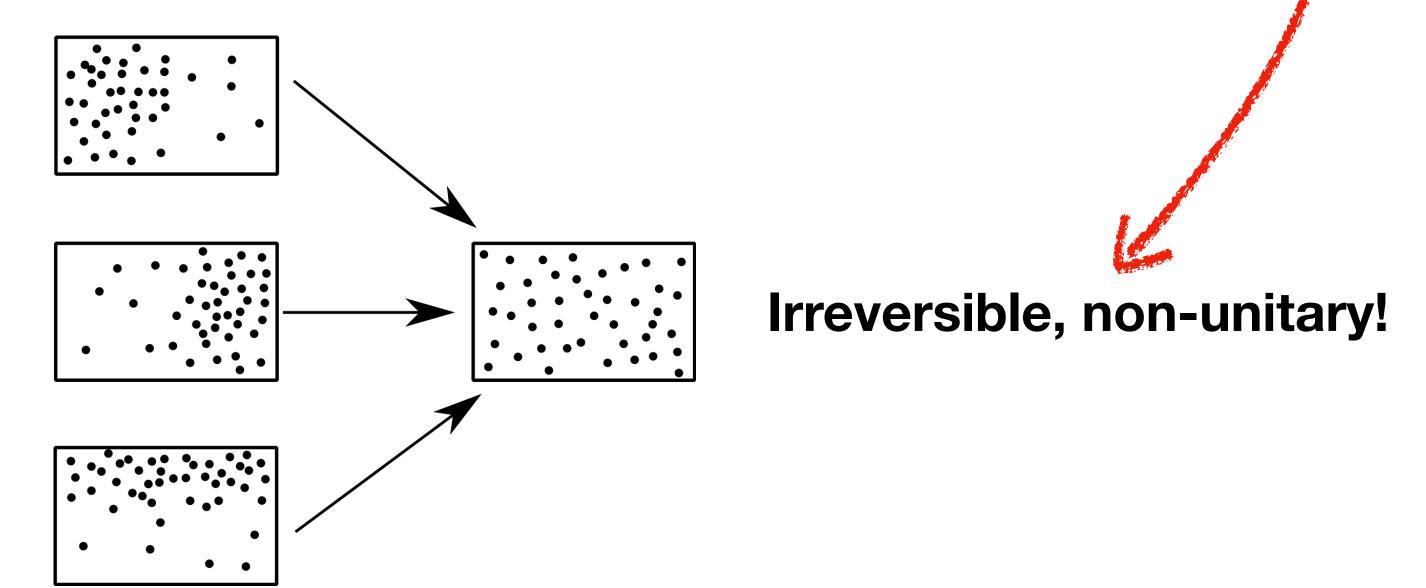


The "paradox" of thermalization

Closed system:
$$|\Psi(t)\rangle = e^{-i\hat{H}t} |\Psi(0)\rangle$$

Basic postulate of statistical physics: system eventually reaches thermal equilibrium state

Microcanonical ensemble:
$$\rho_{\rm mc} \propto \sum_{\alpha:E_{\alpha}\approx\langle\hat{H}\rangle} |\Psi_{\alpha}\rangle\langle\Psi_{\alpha}|$$



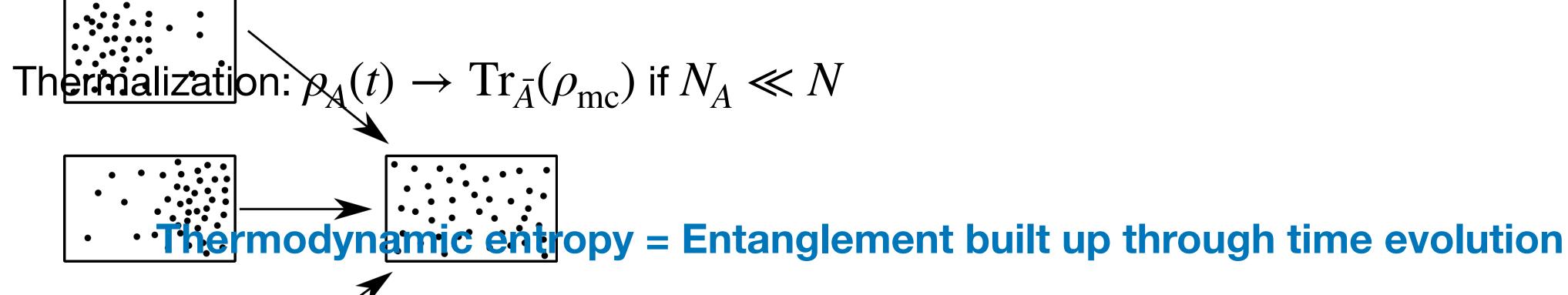
The "paradox" of thermalization... and its resolution

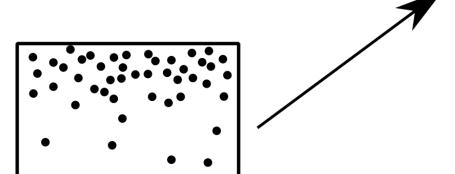
Closed system:
$$|\Psi(t)\rangle = e^{-i\hat{H}t} |\Psi(0)\rangle$$

Information isn't lost, but is delocalized

Microcanonical ensemble: $\rho_{\rm mc} \propto \sum |\Psi_{\alpha}\rangle\langle\Psi_{\alpha}|$

State of a subsystem: $\rho_A(t) = \text{Tr}_{\bar{A}}(\phi : \Psi_{\alpha}(t)) \Psi(t)$

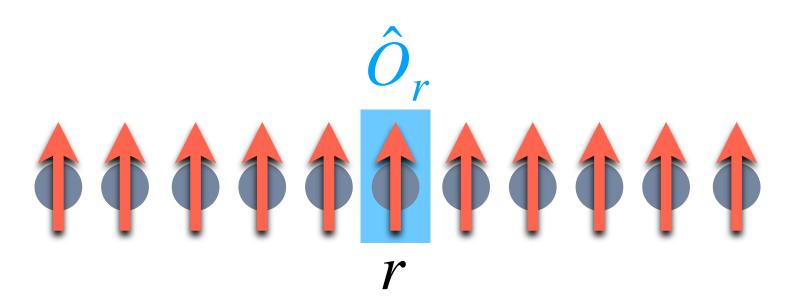




$$S_A(t) = -\operatorname{Tr}(\rho_A \ln \rho_A) \to N_A s_{\text{thermo}}$$

Schrodinger picture: $|\Psi(t)\rangle = \hat{U}(t)|\Psi\rangle$ \longrightarrow Heisenberg picture: $\hat{O}(t) = \hat{U}(t)^{\dagger}\hat{O}\hat{U}(t)$

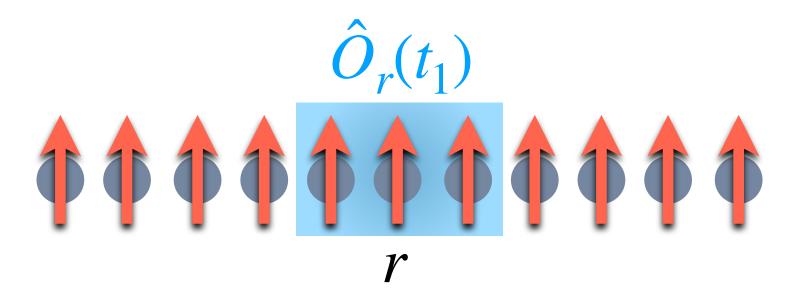
Let $\hat{O} = \hat{O}_r$ be an operator acting at location r (e.g., $\hat{O}_r = \hat{\sigma}_r^z$ spin operator)



Schrodinger picture: $|\Psi(t)\rangle = \hat{U}(t)|\Psi\rangle$ \longrightarrow Heisenberg picture: $\hat{O}(t) = \hat{U}(t)^{\dagger}\hat{O}\hat{U}(t)$

Let $\hat{O} = \hat{O}_r$ be an operator acting at location r (e.g., $\hat{O}_r = \hat{\sigma}_r^z$ spin operator)

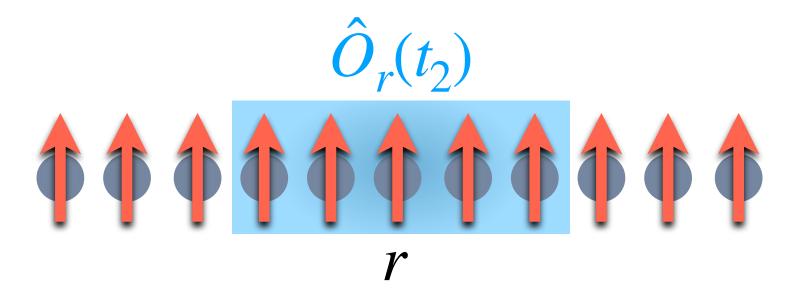
 $\hat{O}_r(t)$ acts on an increasingly large region around r



Schrodinger picture: $|\Psi(t)\rangle = \hat{U}(t)|\Psi\rangle$ \longrightarrow Heisenberg picture: $\hat{O}(t) = \hat{U}(t)^{\dagger}\hat{O}\hat{U}(t)$

Let $\hat{O} = \hat{O}_r$ be an operator acting at location r (e.g., $\hat{O}_r = \hat{\sigma}_r^z$ spin operator)

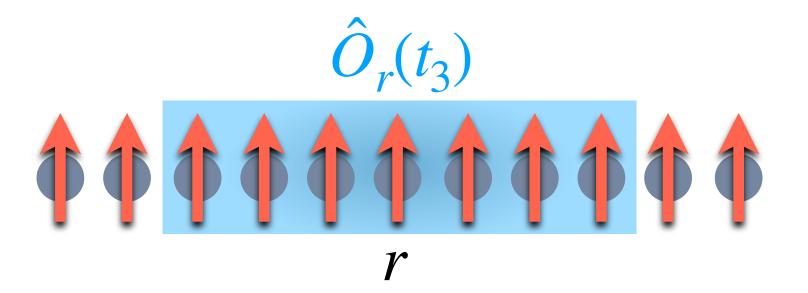
 $\hat{O}_r(t)$ acts on an increasingly large region around r



Schrodinger picture: $|\Psi(t)\rangle = \hat{U}(t)|\Psi\rangle$ \longrightarrow Heisenberg picture: $\hat{O}(t) = \hat{U}(t)^{\dagger}\hat{O}\hat{U}(t)$

Let $\hat{O} = \hat{O}_r$ be an operator acting at location r (e.g., $\hat{O}_r = \hat{\sigma}_r^z$ spin operator)

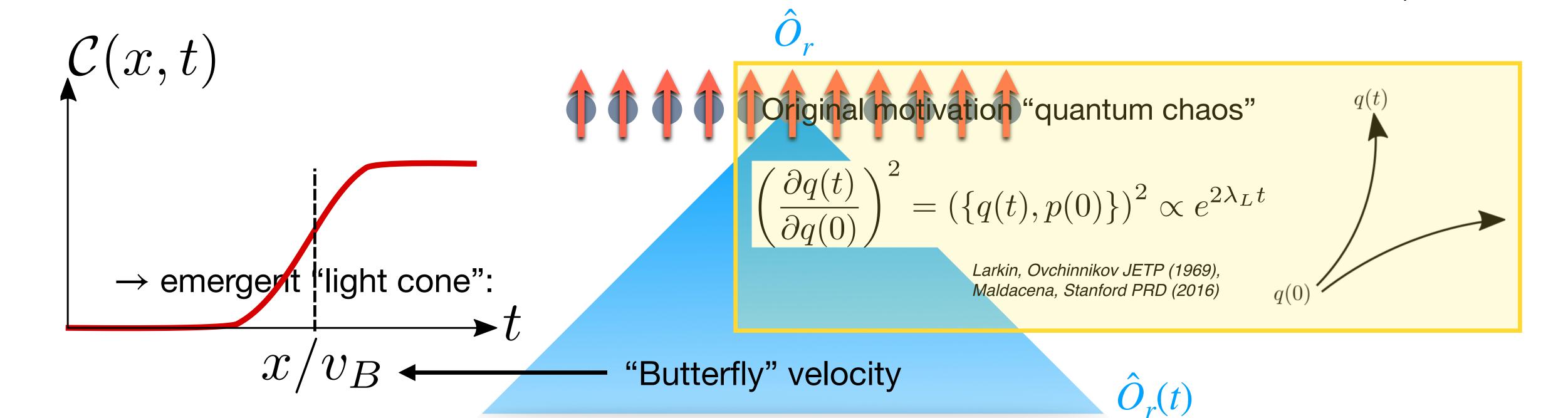
 $\hat{O}_r(t)$ acts on an increasingly large region around r



Schragingser upsint greon Hhut hat ear: $\hat{U}\hat{Q}_{r'}$ Heisenberg picture: $\hat{O}(t) = \hat{U}(t)^{\dagger}\hat{O}\hat{U}(t)$

Let $\hat{O} = \hat{O}_r$ be an operator acting at location r (e.g., $\hat{O}_r = \hat{O}_r$) spin operator) Norm of commutator: $\mathcal{C}(r-r',t) = -\mathrm{Tr}([\hat{O}_r(t),\hat{O}_{r'}']^2)^r$

 $\hat{O}_r(t)$ acts on an increasingly larger regional around the later (OTOC)



Dynamics is hard to study

Expectation values:

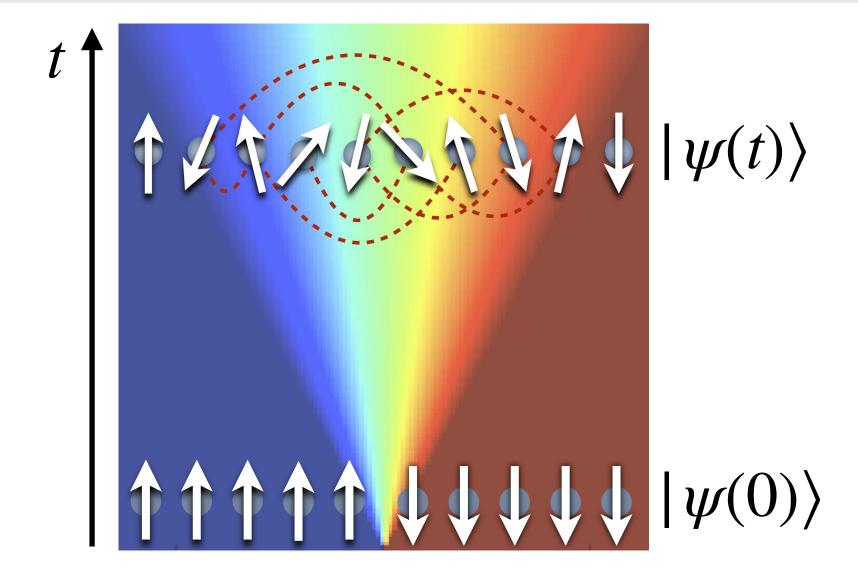
$$\langle O(t) \rangle = \langle \Psi(t) | O | \Psi(t) \rangle$$

Entanglement entropy:

$$S_A(t) = -\operatorname{Tr}(\rho_A \ln \rho_A)$$

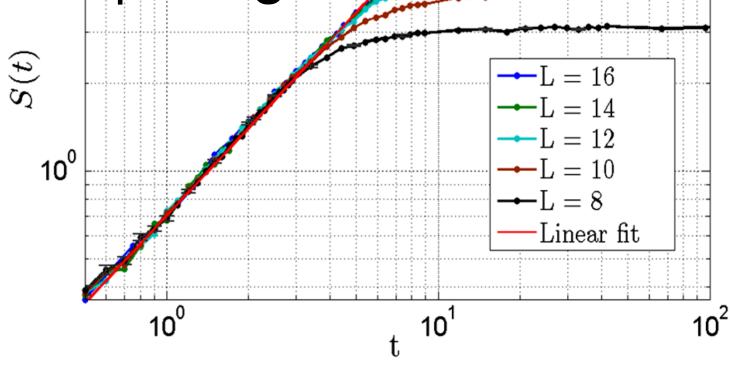
OTOC:

$$C(r - r', t) = -\text{Tr}([\hat{O}_r(t), \hat{O}'_{r'}]^2)$$



But calculating any of these tends to be exponentially costly in the light cone volume $(vt)^D$

⇒ Need **solvable** models that can capture **generic** behavior



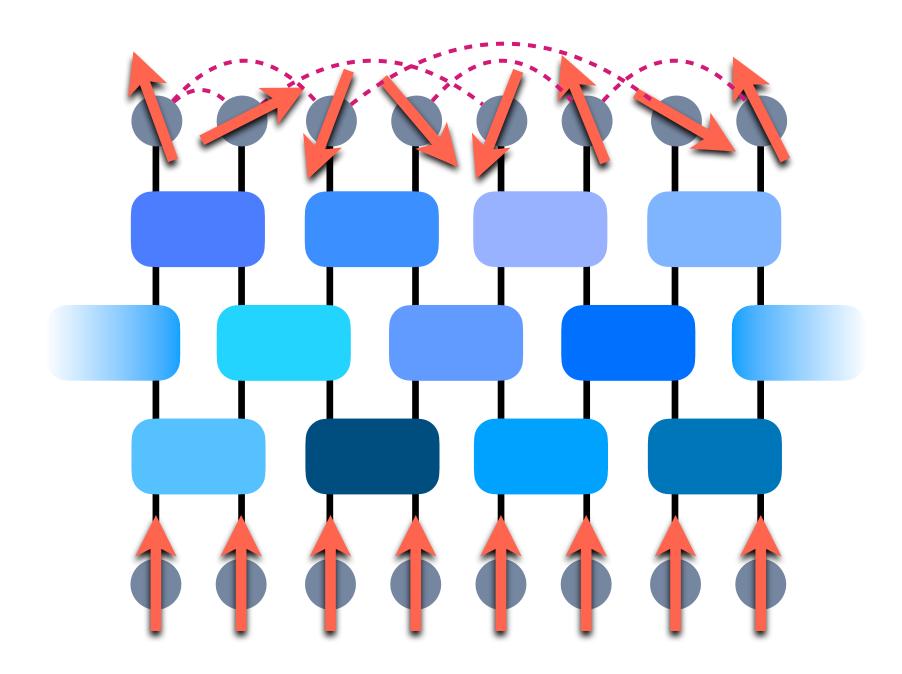
Kim, Huse: PRL (2013)

Plan

Introduction: Closed many-body systems far from equilibrium

Part 1: Haar random circuits as solvable models

Part 2: Symmetries, measurements and all that



Haar random unitary circuits

We want to keep unitarity and locality (light cones)

Replace Hamiltonian evolution with a circuit of local unitary gates

To get a solvable model, we need to find appropriate gates Motivation: Trotter decomposition $e^{-i(H_{\rm even}+H_{\rm odd})t} \approx \left(e^{-iH_{\rm even}\delta t}e^{-iH_{\rm odd}\delta t}\right)^{t/\delta t}$

Option 1: impose specific structure, e.g. "dual unitarity" Bertini, Claeys, Prosen: arXiv 2: Haar measure: uniquely defined by requiring that We replace $e^{ih_{i,i+1}\delta t}$ with a more generic unitary \Rightarrow breaks energy conservation Option 2: make gates random and focus on average f typical behavior Fisher, Bertini, Claeys, Prosen: arXiv 2:

We will choose each gate **independently** from Haar distribution over U(4)

Not this:

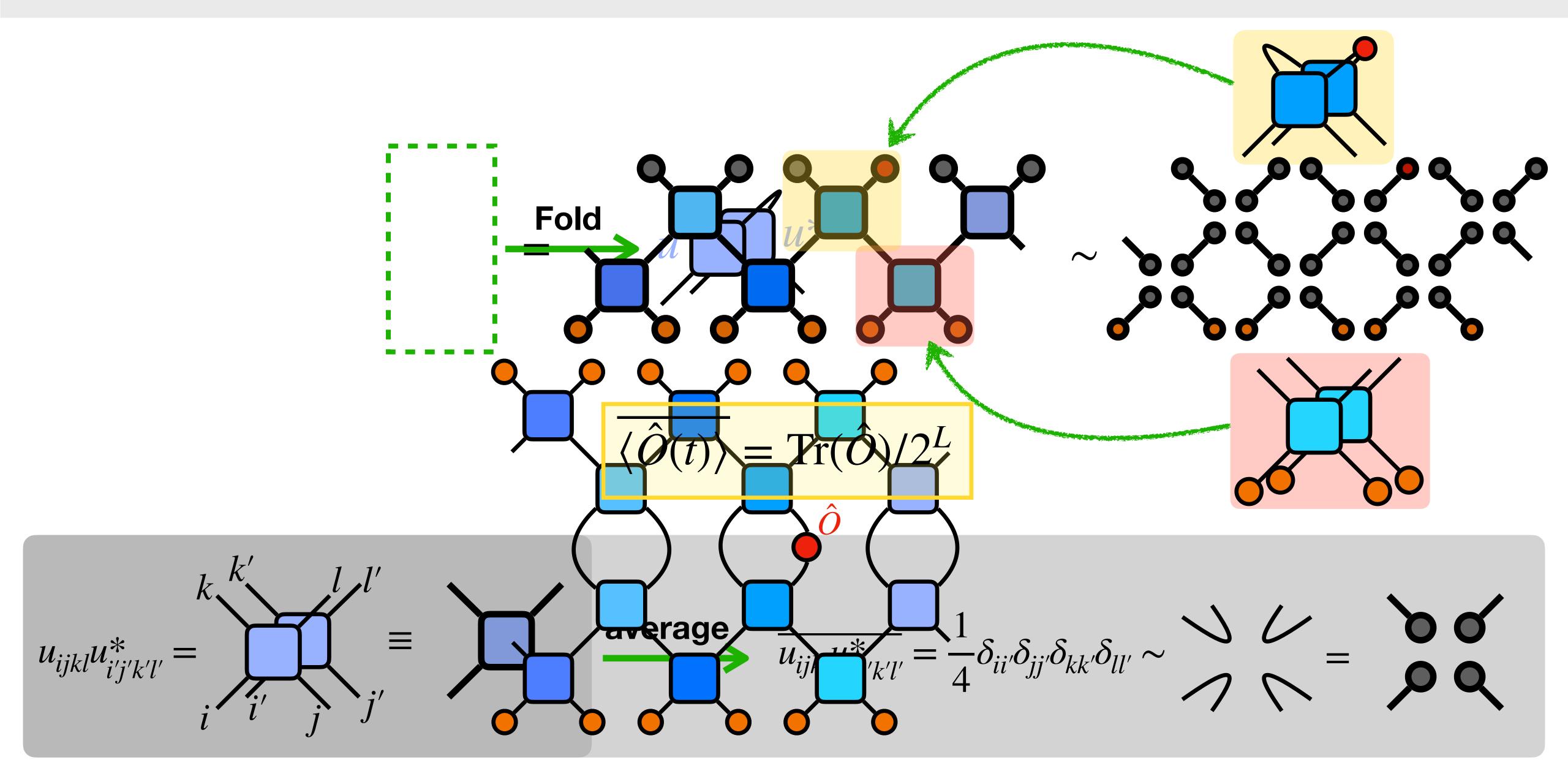
Calculating with Haar circuits: a warm-up

$$|\Psi(t)\rangle = U(t) |\Psi(0)\rangle =$$

$$|\Psi(t)\rangle = U(t) |\Psi(0)\rangle = \Psi(0)\rangle$$

$$\langle \hat{O} \rangle (t) = \langle \Psi(t) | \hat{O} | \Psi(t) \rangle =$$

Calculating with Haar circuits: a warm-up



Let's do something more interesting: entanglement

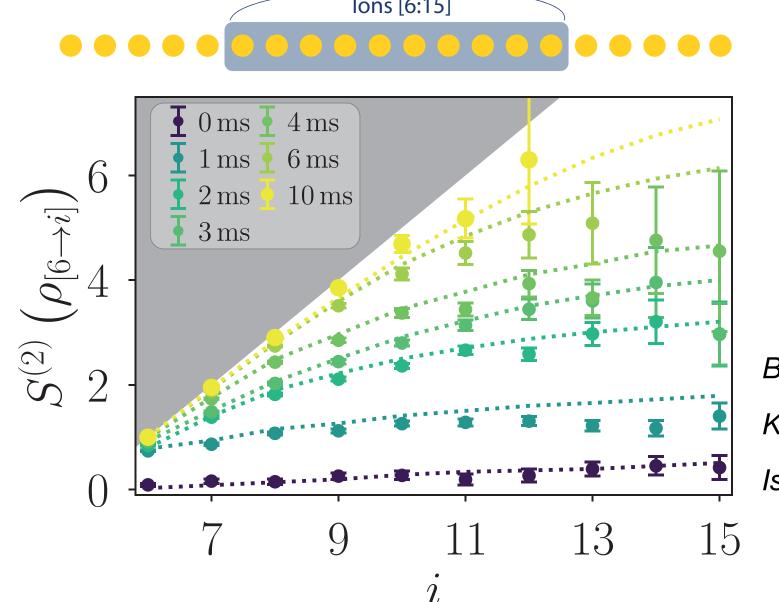
Von Neumann entropy: $S_{\rm vN}(t) = -\operatorname{Tr}(\rho_A \ln \rho_A)$ — Involves all powers of ρ

$$S_{\text{vN}} = \lim_{n \to 1} S_n$$

We will calculate $S_2^{\text{ann.}} = -\log \overline{\text{Tr}(\rho_A^2)}$

"Annealed" average of 2nd Rényi entropy

Also to measure!

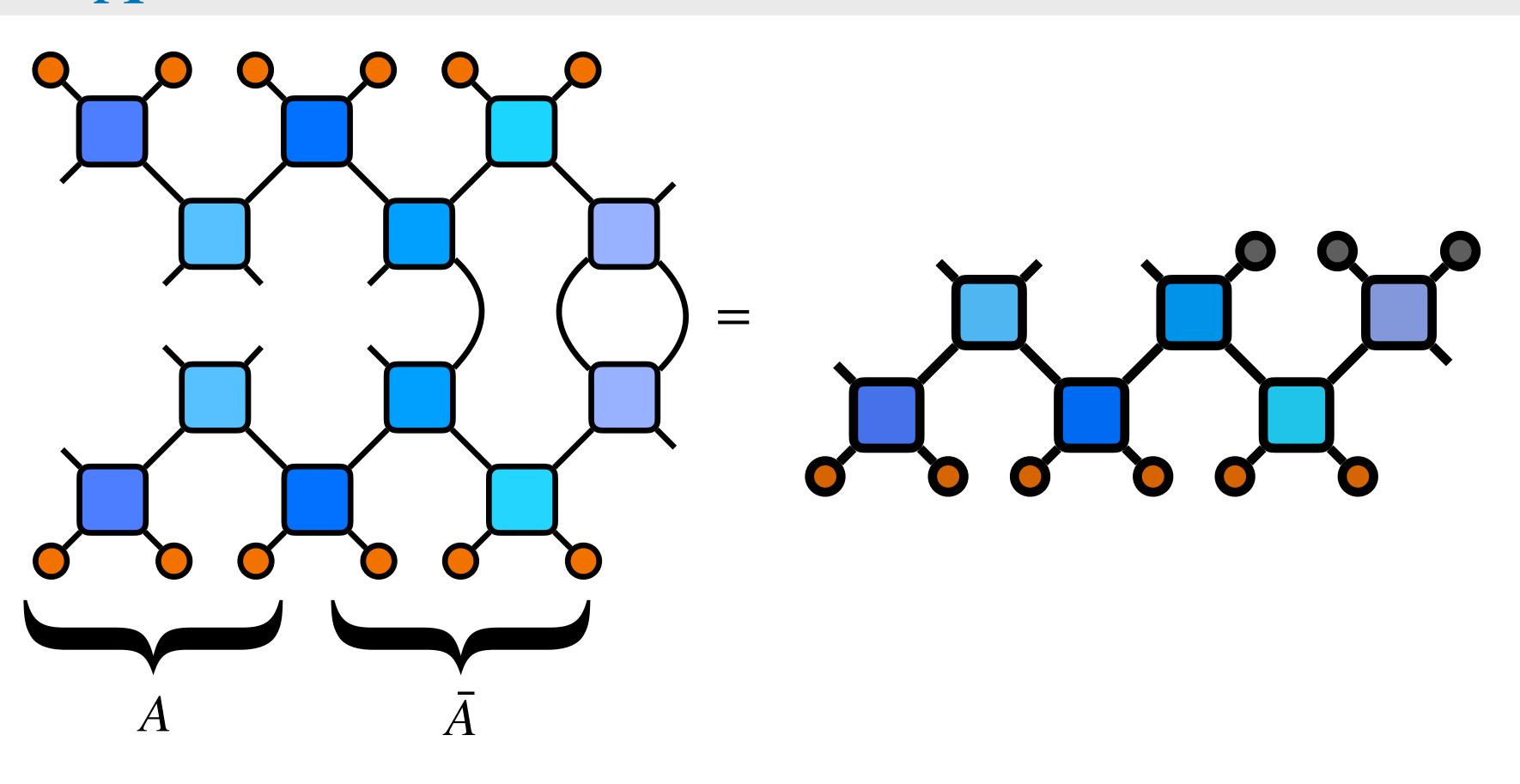


Brydges et al., Science (2019)

Kaufman et al., Science (2016)

Islam et al., Nature (2015)

$$\rho_A(t) = \operatorname{Tr}_{\bar{A}}(|\Psi(t)\rangle)\langle \Psi(t)|) =$$



$$\rho_A(t) = \operatorname{Tr}_{\tilde{A}}(|\Psi(t)\rangle)\langle\Psi(t)|) =$$

$$\operatorname{Tr}(\rho_A(t)^2) =$$

$$\mathbf{P} = \bigcap_{1234} \mathbf{P} = \bigcap_{1234}$$

$$\overline{\mathrm{Tr}(\rho_A(t)^2)} =$$

We mapped the average to the partition function of a 2D classical spin-1/2 model!

$$\operatorname{Tr}(\rho_A(t)^2) =$$

$$\overline{u \otimes u^* \otimes u \otimes u^*} = \sum_{i=1}^{n} \frac{1}{i}$$

$$-\frac{1}{4}$$

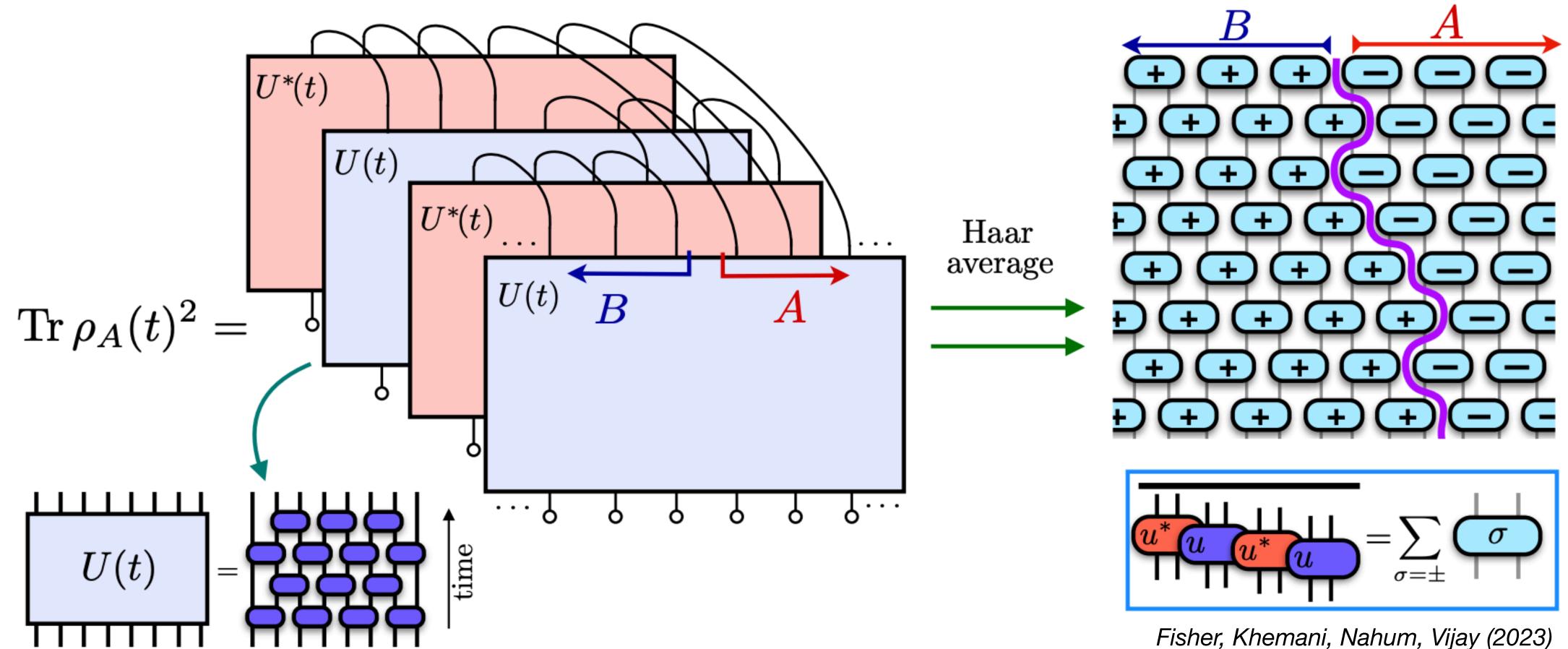
$$Q = \bigcap_{1234} = \bigcap_{1234}$$

$$\frac{1}{\operatorname{Tr}(p_A(t)^2)} = \frac{4}{5} \frac{7}{2}$$
 Domain wall random walk

$$\Rightarrow \text{Recursion: } Z(x,t) := \text{Tr}(\rho_{[0,x]}(t)^2) \text{ obeys } \overline{Z}(x,t) = \frac{4}{5} \frac{\overline{Z}(x-1,t-1) + \overline{Z}(x+1,t-1)}{2}$$

produced near state:
$$Qx_1Q = e^{\frac{1}{2}S_2^{\text{ann.}}} Q = e^{\frac{1}{4}S_2^{\text{ann.}}} Q = e^{\frac{1}{4}S_2^$$

Statistical mechanics of entanglement growth



 $e^{-S_2} \leftrightarrow \text{domain wall free energy}$

Growth rate of entropy ↔ line tension (ferromagnet)

Generalizes to non-random dynamics

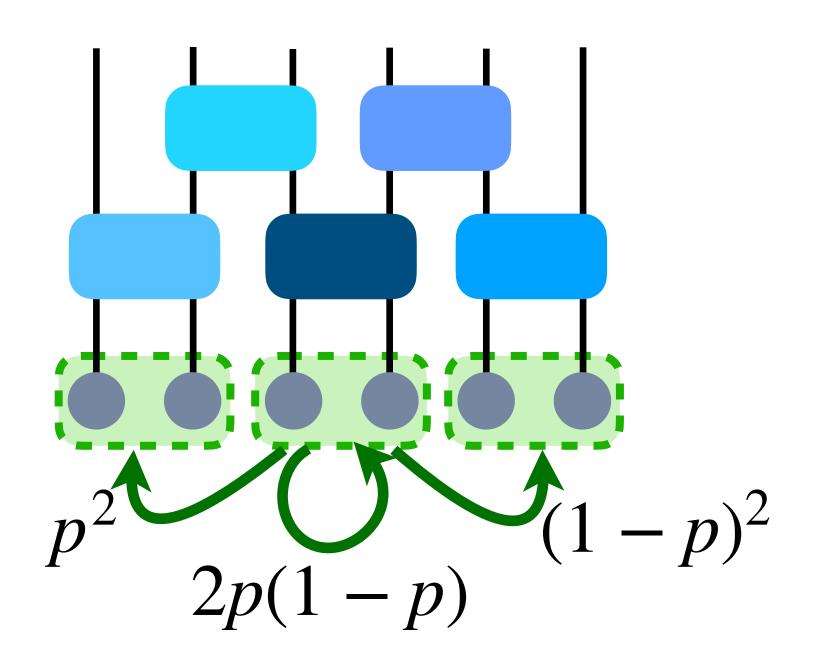
Jonay, Huse, Nahum: arXiv 1803.00089

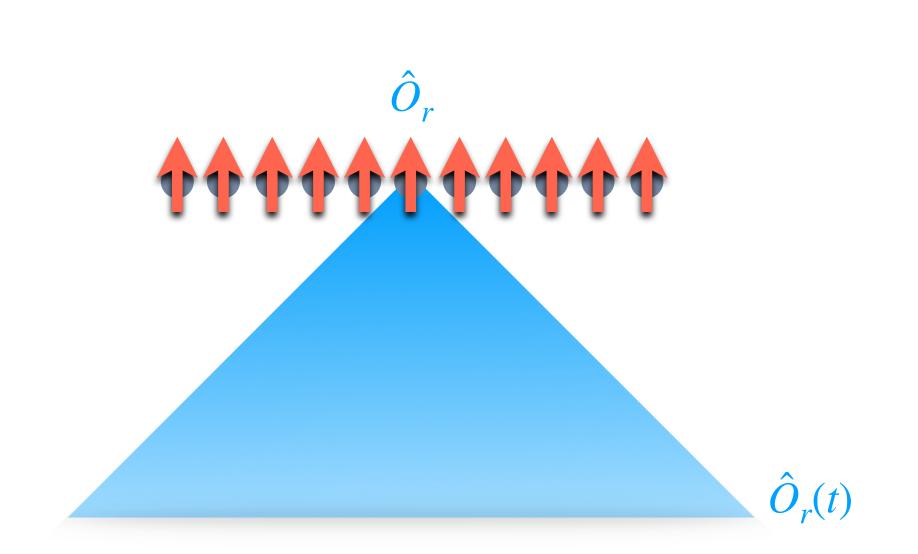
Zhou, Nahum: PRX (2020)

"Hydrodynamics" of operator growth

 $ho_R(x,t)$: probability that operator spread to distance x by time t of t of

Obeys an exact random walk equation





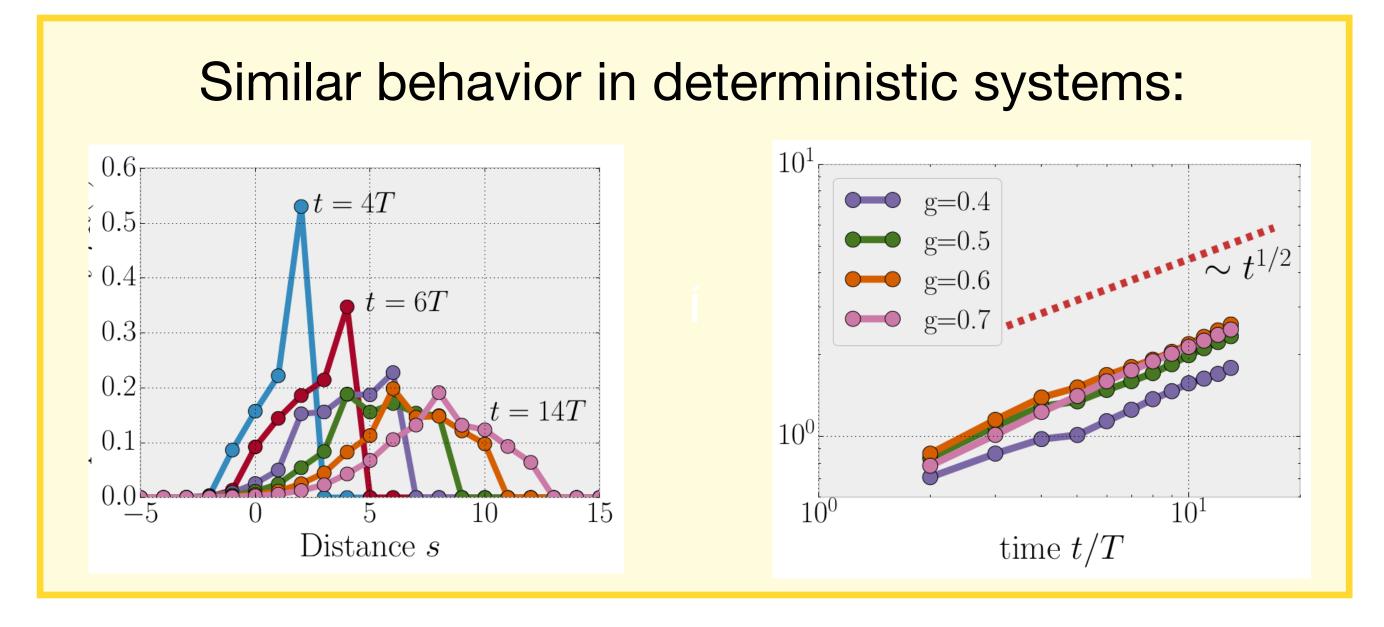
Von Keyserlingk, TR, Pollmann, Sondhi: PRX (2018)

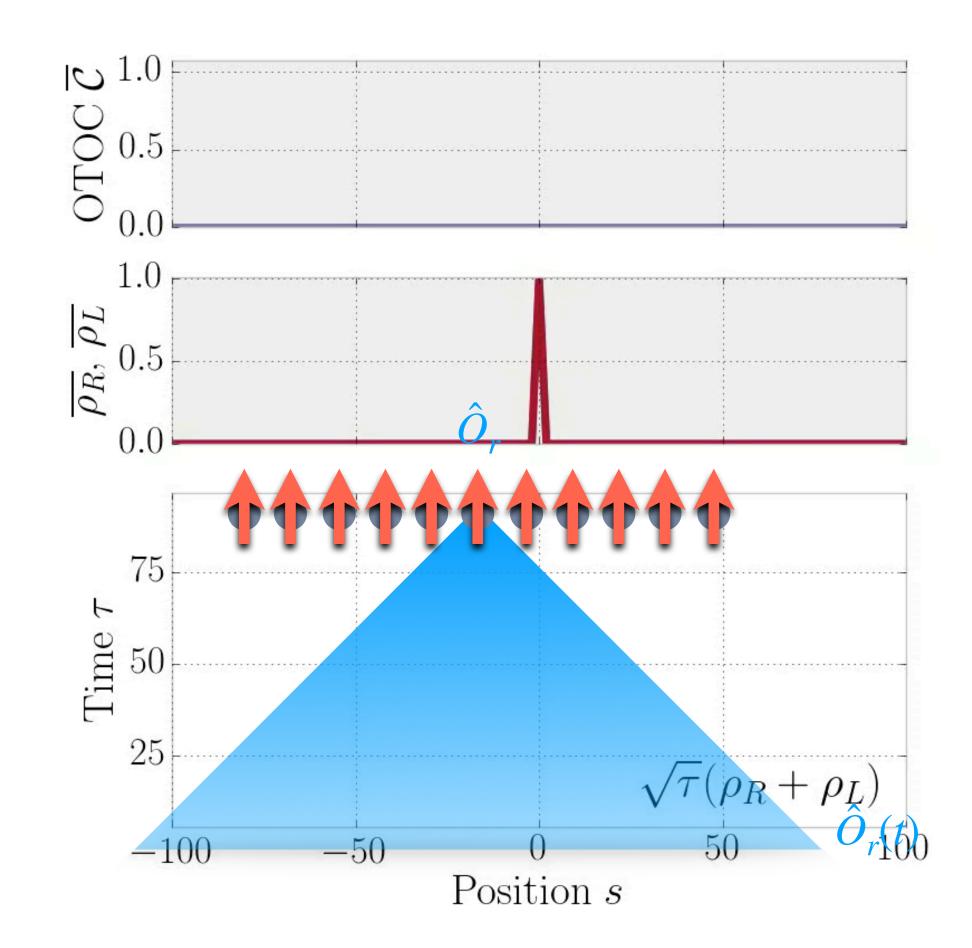
"Hydrodynamics" of operator growth

 $\rho_R(x,t)$: probability that operator spread to distance x by time t If x>0: $\rho_R(x,t)\approx \partial_x \mathcal{C}(x,t)$

⇒ biased diffusion

$$\partial_t \rho_R = \nu_B \partial_x \rho_R + D \partial_x^2 \rho_R$$

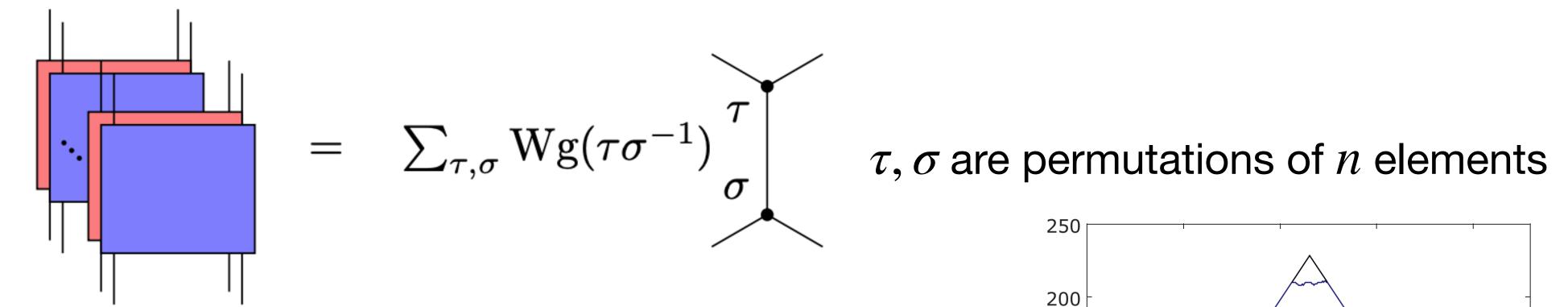




Going to higher moments

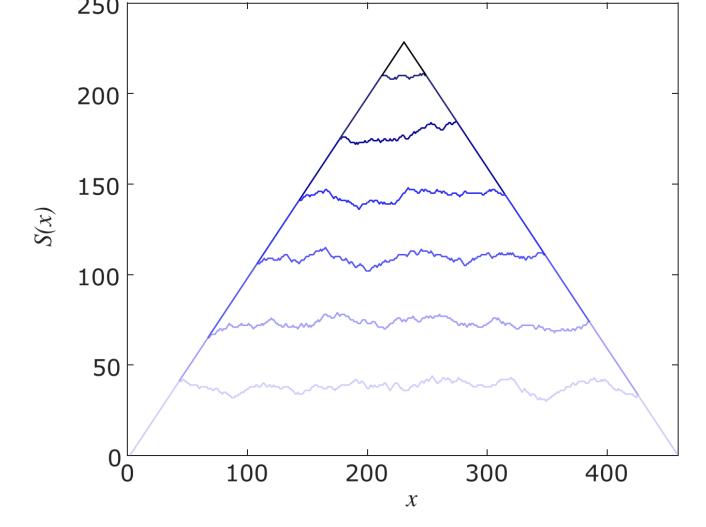
$$S_n = \frac{1}{1-n} \log \operatorname{Tr}(\rho_A^n) \longrightarrow \text{Want to calculate } Z_n = \overline{\operatorname{Tr}(\rho_A^n)} \longrightarrow \text{Needs } 2n \text{ copies of } U(t)$$

Weingarten calculus:



 \Rightarrow stat-mech like model with n! states and negative weights

Useful simplification: replace qubits with d-dim. qudits and take $d \gg 1$



Replica trick:
$$\overline{S}_n = \frac{1}{1-n} \frac{\partial \overline{Z}_n^k}{\partial k} \bigg|_{k=0}$$

New physics from fluctuations that was absent from Z_n Described by Kardar-Parisi-Zhang (KPZ) equation

Zhou, Nahum: PRB (2019)

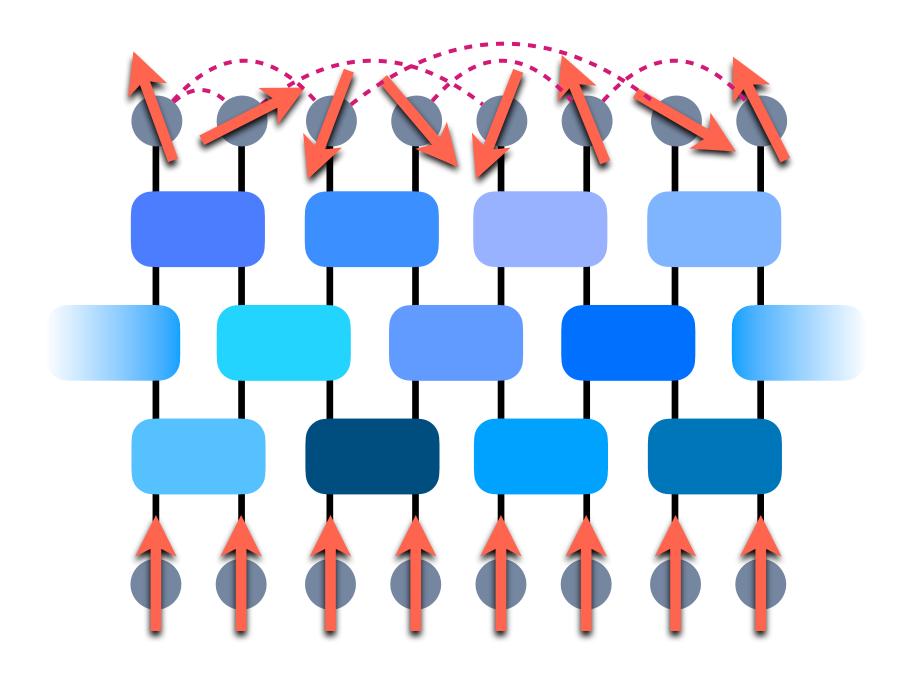
Nahum, Ruhman, Vijay, Haah: PRX (2017)

Plan

Introduction: Closed many-body systems far from equilibrium

Part 1: Haar random circuits as solvable models

Part 2: Symmetries, measurements and all that

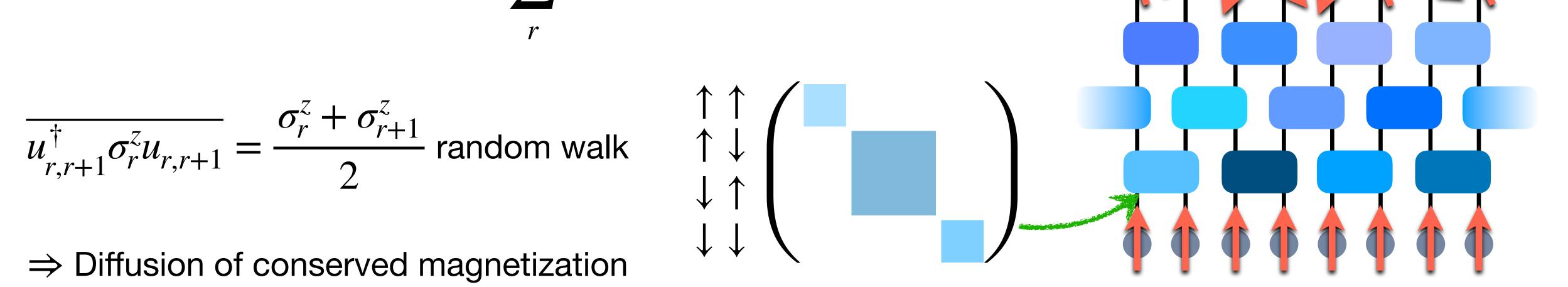


Adding conserved quantities

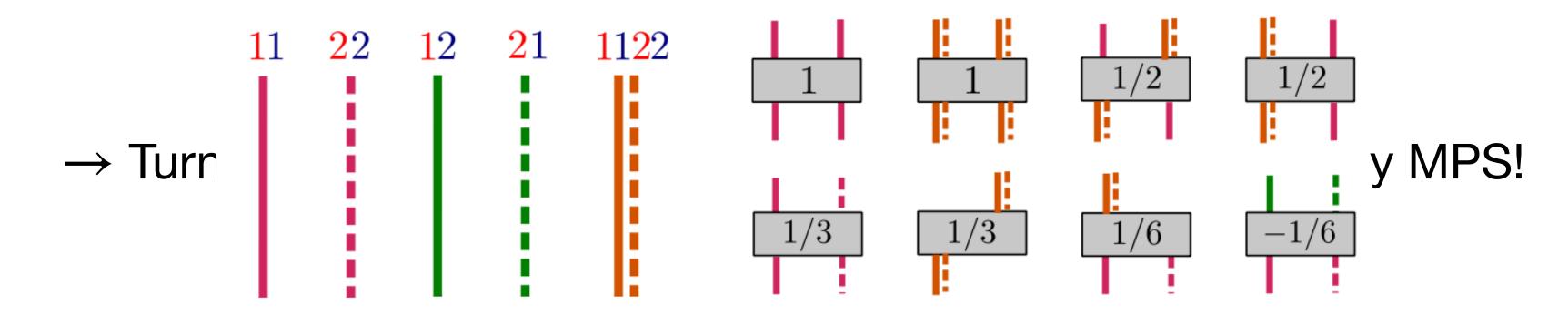
Want dynamics to conserve
$$Q = \sum_{r} \sigma_{r}^{z}$$

$$\frac{u_{r,r+1}^{\dagger}\sigma_r^z u_{r,r+1}}{2} = \frac{\sigma_r^z + \sigma_{r+1}^z}{2} \text{ random walk}$$

⇒ Diffusion of conserved magnetization



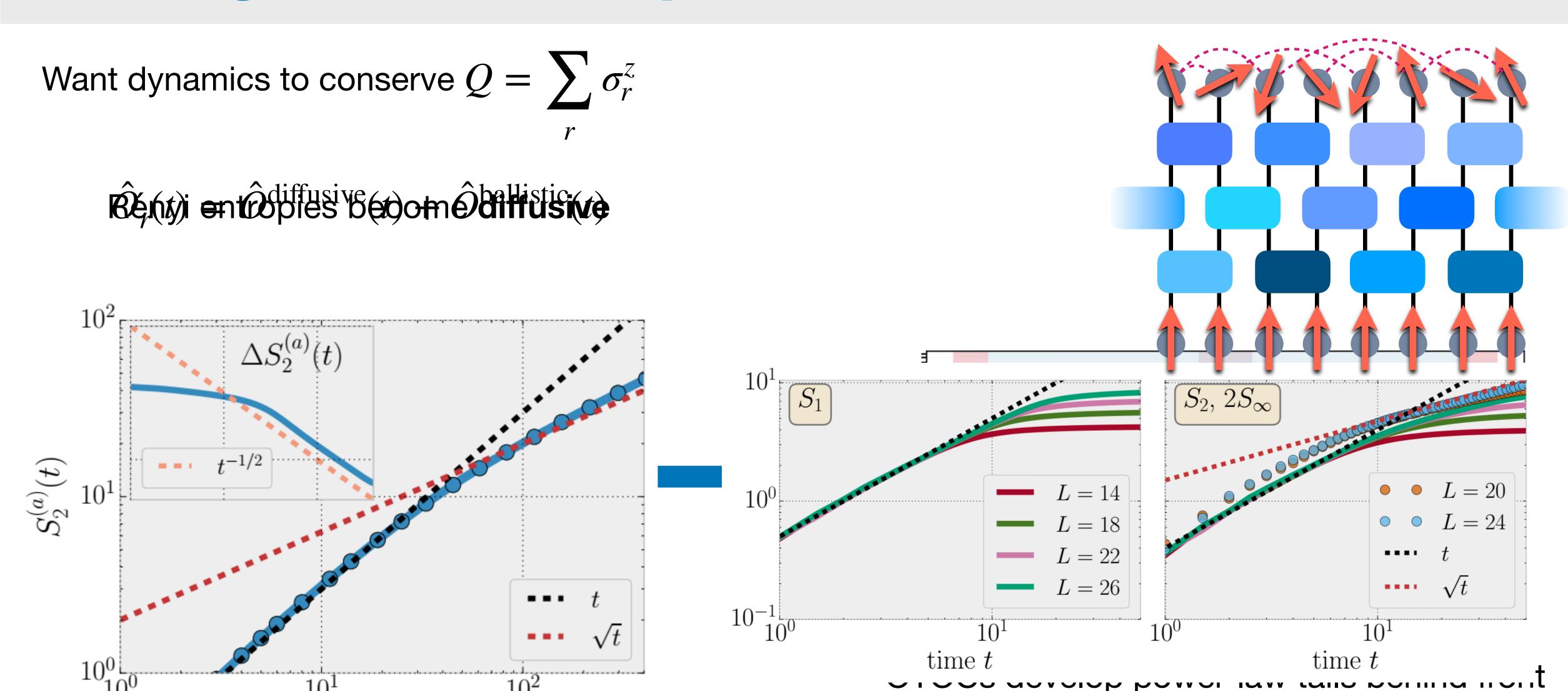
 $\overline{u} \otimes u^* \otimes u \otimes u^*$ now leads to partition function with 6 states and negative weights



Adding conserved quantities

time t

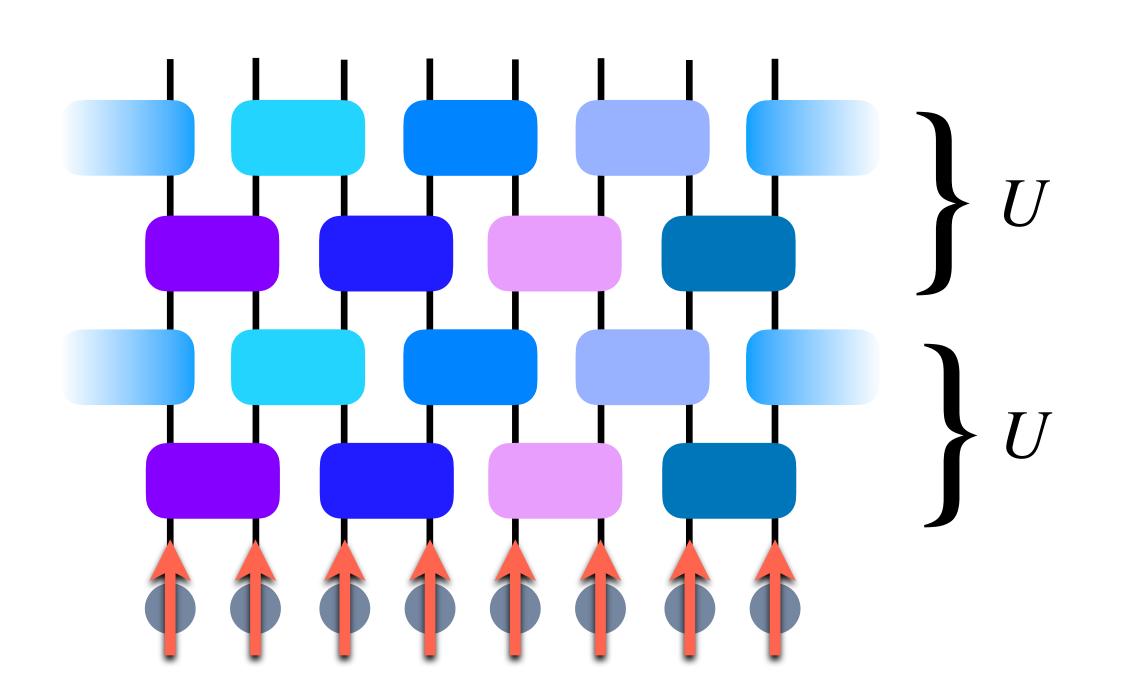
TR, von Keyserlingk, Pollmann: PRL (2019)



Also seen for Ising spin chain Ilmann: PRX (2018)

Khemani, Vishwanath, Huse: PRX (2018)

We can also add back (discrete) time translation symmetry



Choose 2 layers randomly then repeat them

Much harder (correlations in time)

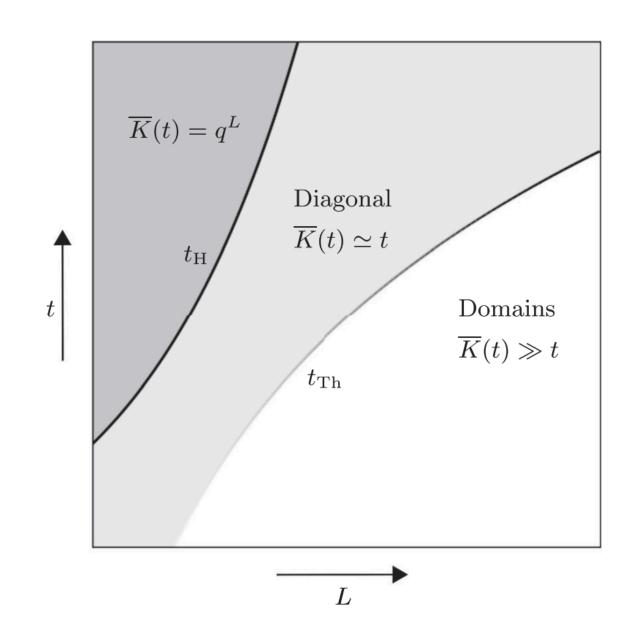
But calculations possible as $d \to \infty$

Chan, De Luca, Chalker: PRX (2019)

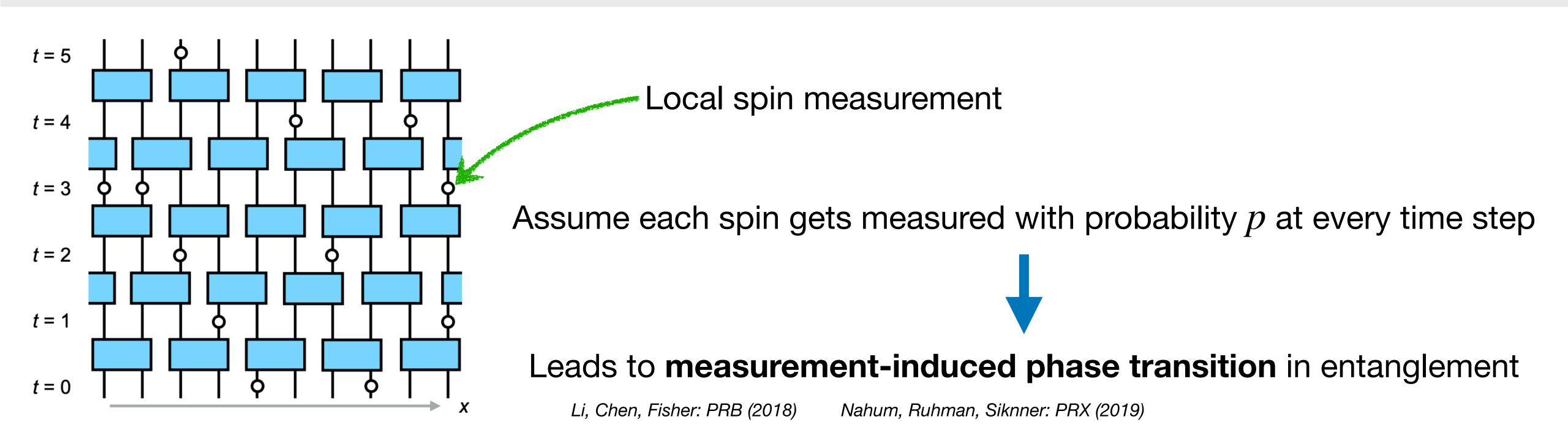
Garratt, Chalker: PRX (2021)

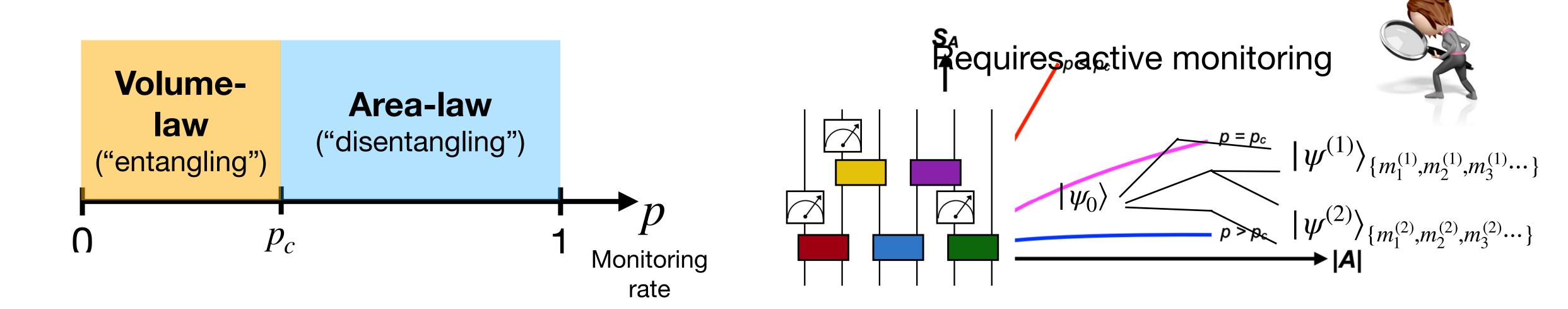
Can calculate spectral form factor: $K(t) = |\operatorname{Tr}(U^t)|^2$

→ Reveals the emergence of random matrix spectral statistics



Breaking unitarity with measurements





Similar phase transitions occur in random tensor networks

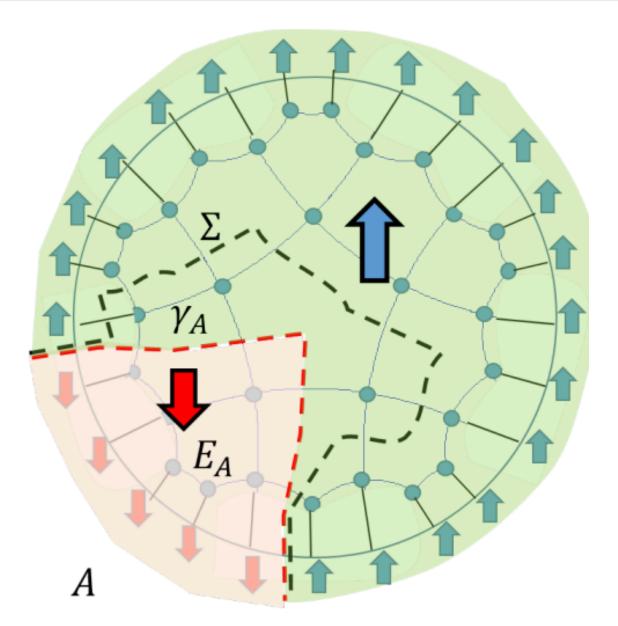
"Holographic" tensor network (Physical legs on boundary)

Random tensors (column of Haar random u)

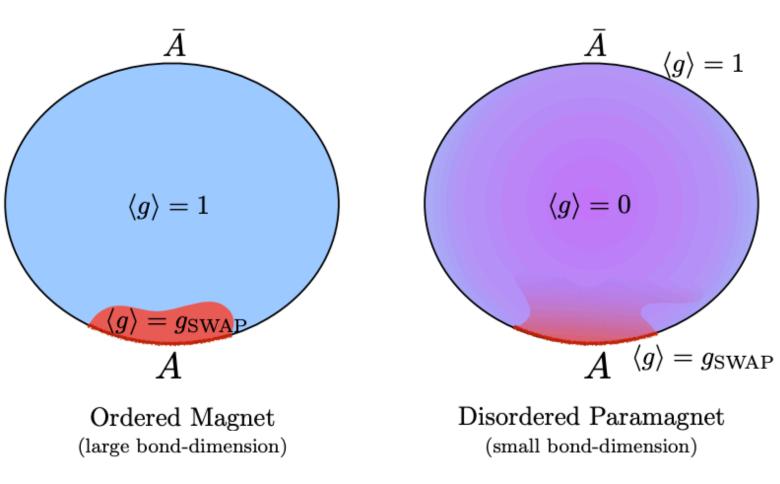
Entanglement: free energy of bulk domain wall

Large bond dim. \rightarrow ferromagnet \rightarrow Ryu-Takayanagi formula

Small bond dim. \rightarrow paramagnet \rightarrow RT breaks down



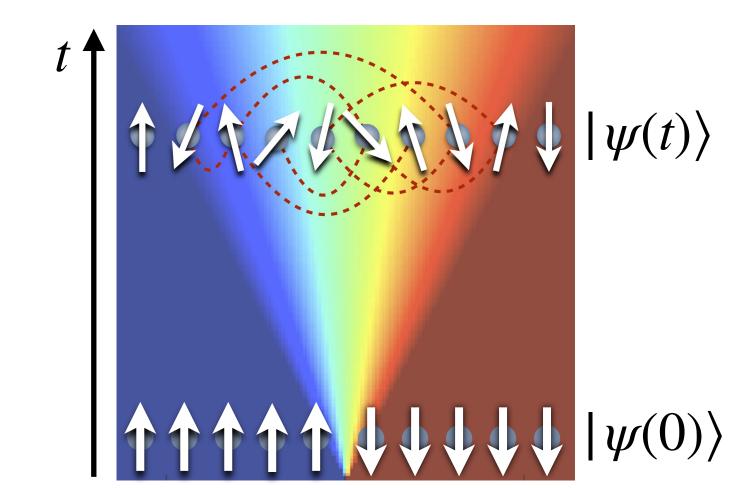
Hayden et al: JHEP (2016)



Vasseur et al: PRB (2019)

Summary

• Random circuits provide useful toy models to study quantum dynamics



Mappings to stat. mech.-like problems (=tensor network contractions)

• We can introduce structure (symmetries, measurements, ...) in a controlled way

